Ublituximab, a Novel, Glycoengineered Anti-CD20 Monoclonal Antibody (mAb), Demonstrates Enhanced Antibody-Dependent Cellular Cytolysis (ADCC) Relative to Other Anti-CD20 mAbs

John F. Foley, MD,¹ Enrique Alvarez, MD, PhD,² Edward J. Fox, MD, PhD,³ Hari P. Miskin, MS,³ Lily Lee, PhD,³ Lawrence Steinman, MD⁴

¹Rocky Mountain Multiple Sclerosis Clinic, Salt Lake City, UT; ²University of Colorado, Aurora, CO; ³TG Therapeutics, New York, NY; ⁴Stanford University, Stanford, CA

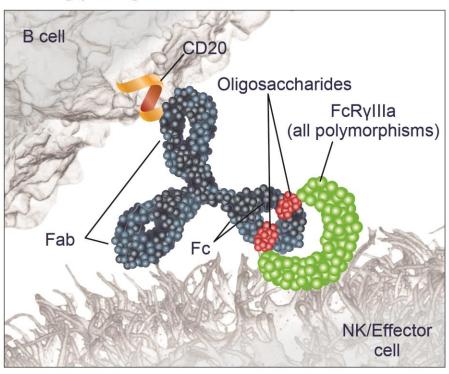
OBJECTIVE

The in vitro functional characterization of ublituximab relative to other anti-CD20 mAbs

KEY FINDINGS

- Ublituximab demonstrated enhanced Fcγ-receptor (FcγR) binding and ADCC compared with other commercially available anti-CD20 mAbs across all polymorphisms
 - FcγR binding affinity (K_D [nM]):
 - FcγRIIIa 158V: ublituximab, 64.1; ocrelizumab, 1025.8; ofatumumab, 1641.4; and rituximab, 1199.8
 - FcγRIIIa 158F: ublituximab, 680.3; ocrelizumab, 6762.9; ofatumumab, 14,815.2; and rituximab, 6960.9
 - ADCC activity (EC₅₀ [pg/mL]): ublituximab, 2.4; ocrelizumab, 60.8; ofatumumab, 74.1; and rituximab, 5457.0
- All evaluated mAbs had comparable CD20 binding affinity (EC₅₀ [µg/mL]): ublituximab, 0.063; ocrelizumab, 0.111; ofatumumab, 0.092; and rituximab, 0.133.

CONCLUSION


• In vitro studies demonstrated that ublituximab has higher FcγRIIIa binding and ADCC activity as a result of its glycoengineered Fc region compared with other commercially available anti-CD20 mAbs

BACKGROUND

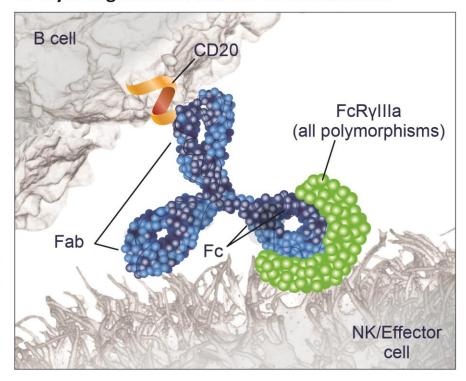
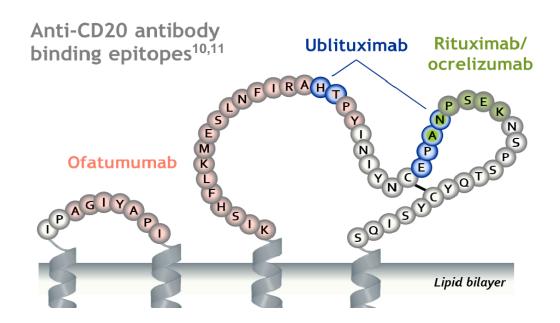

- Anti-CD20 mAb—mediated B-cell depletion is induced by several mechanisms, including ADCC and complement-dependent cytolysis
- ADCC is independent of the complement system and is mediated by interactions between the Fc region of anti-CD20 mAbs and the FcγR on effector cells (eg, natural killer cells)¹
- Polymorphisms of the FcγRIIIa at amino acid 158 (F/V) have resulted in impaired binding to immunoglobulin G (IgG), reduced effector-cell engagement, and reduced clinical response to rituximab in various disease states (eg, rheumatoid arthritis and neuromyelitis optica)^{2,3}
- The FcγRIIIa 158F polymorphism, expressed in approximately 40% of the healthy population,⁴ is more difficult to bind compared with FcγRIIIa 158V
- Ublituximab is a novel, chimeric, type 1 IgG mAb targeting a unique epitope of CD20 on B cells.
 Ublituximab is glycoengineered for reduced fucose on its Fc region, conferring greater affinity to FcγRs, leading to enhanced ADCC (Figure 1)

Figure 1. Ublituximab Is Glycoengineered to Enhance ADCC

A. Nonglycoengineered Anti-CD20

B. Glycoengineered Anti-CD20: Ublituximab

(A) In nonglycoengineered anti-CD20 antibodies, the core fucose of Fc-linked oligosaccharides sterically blocks interaction with FcγRIIIa, reducing affinity.^{5,6} (B) Ublituximab is glycoengineered to have a low fucose content in the Fc region, which allows for closer interaction and enhanced affinity for all variants of FcγRIIIa.⁶⁻⁸

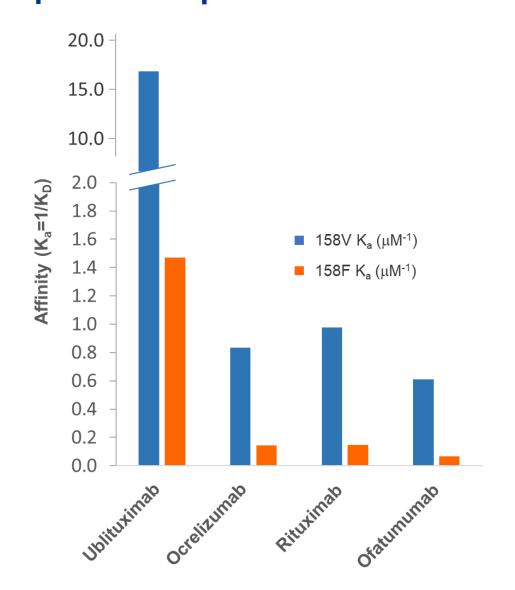

METHODS

- CD20 binding, FcγRIIIa-receptor binding, and ADCC were evaluated for ublituximab and other commercially available CD20 therapies (ocrelizumab, ofatumumab, and rituximab) with in vitro studies
- CD20 binding was evaluated using a CD20-expressing cell line (JeKo-1) and a Meso Scale
 Discovery electrochemiluminescence assay. FcγR affinity was evaluated using surface plasmon
 resonance. ADCC activity was evaluated using CD20-expressing Raji cells plus KILR® (CD16+)
 effector cells and diluted human serum samples in a luminescent cytotoxicity assay9

RESULTS

• CD20 binding affinity was similar for all evaluated antibodies (EC₅₀ [μg/mL]): ublituximab, 0.063; ocrelizumab, 0.111; ofatumumab, 0.092; and rituximab, 0.133 (**Figure 2**)

Figure 2. CD20 Binding Affinity



	EC ₅₀ (µg/mL) ⁹
Ublituximab	0.063
Rituximab	0.133
Ocrelizumab	0.111
Ofatumumab	0.092

RESULTS

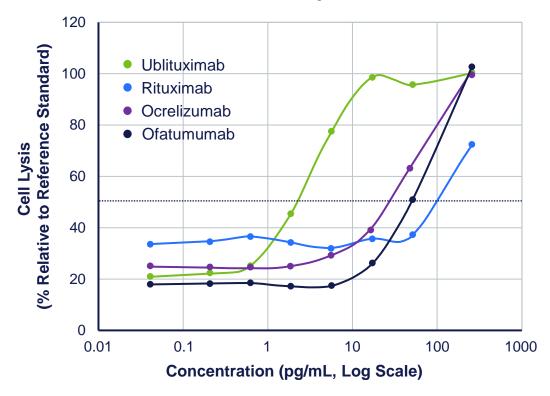
• Ublituximab demonstrates the highest binding affinity (lowest K_D [nM]) to all FcγRIIIa polymorphisms: 16-25× greater for FcγRIIIa 158V and 10-22× greater for FcγRIIIa 158F compared with ocrelizumab, rituximab, and ofatumumab (**Figure 3**)

Figure 3. Ublituximab Has the Highest Binding Affinity to Polymorphisms of FcyRIIIa Receptor⁹

	158V		158F	
	K _D (nM)	K _a (μ M -1)	K _D (nM)	K _a (μ M ⁻¹)
Ublituximab	64	15.63	680	1.47
Ocrelizumab	1199	0.83	6960	0.14
Rituximab	1025	0.98	6762	0.15
Ofatumumab	1641	0.61	14,815	0.07

Ublituximab has the highest affinity to 158V and 158F

- 16-25× higher binding affinity to FcγRIIIa 158V [highaffinity receptor] than ocrelizumab, rituximab, and ofatumumab
- 10-22× higher binding affinity to FcγRIIIa 158F [lowaffinity receptor] than ocrelizumab, rituximab, and ofatumumab


Ublituximab's affinity for 158F is higher than that of all other anti-CD20s to both 158V and 158F

RESULTS

- Ublituximab has 25-30× the ADCC potential compared with ocrelizumab and ofatumumab and >2000× greater than that of rituximab (Figure 4)
 - ADCC activity (EC₅₀ [pg/mL]): ublituximab, 2.4 versus ocrelizumab, 60.8; ofatumumab, 74.1; and rituximab, 5457.0

Figure 4. Ublituximab Has the Highest ADCC Activity Compared With Other Anti-CD20 Antibodies

ADCC Dose-Response Curve⁹

- ADCC activity was measured using CD20-expressing Raji cells in the presence of KILR (CD16+) effector cells and human serum samples diluted to 250-fold
- Cell viability was measured using CytoTox-Glo™

ADCC Activity⁹

	EC ₅₀ ^a (pg/mL)
Ublituximab	2.42
Rituximab	5457.0
Ocrelizumab	60.8
Ofatumumab	74.1

^aThe EC₅₀ is the concentration effective in producing 50% of the maximal response and allows for comparison of drug potencies.¹²

REFERENCES

- 1. Gogesch P, et al. *Int J Mol Sci.* 2021;22(16):8947.
- 2. Zhong M, et al. *Neurotherapeutics*. 2020;17(4):1768-1784.
- 3. Kim SH, et al. *JAMA Neurol*. 2015;72(9):989-995.
- 4. Mahaweni NM, et al. *Sci Rep.* 2018;8(1):15983.
- 5. Ferrara C, et al. *Proc Natl Acad Sci U S A*. 2011;108(31):12669-12674.
- 6. Sun Y, et al. *J Biol Chem.* 2021;297(1):100826.
- 7. de Romeuf C, et al. *Br J Haematol*. 2008;140(6):635-643.
- 8. Fox E, et al. *Mult Scler*. 2021;27(3):420-429.
- 9. TG Therapeutics. Data on file.
- 10. Klein C, et al. *MAbs*. 2013;5(1):22-33.
- 11. Ruuls SR, et al. *Biotechnol J.* 2008;3(9-10):1157-1171.
- 12. Science Direct. Accessed February 10, 2022. https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ec50.

ACKNOWLEDGMENTS

 The authors thank the participants and their families for participating in the ULTIMATE I and II studies. Thank you to DeRen Huang for his contributions. The authors also thank Apollo Medical Communications for providing editorial support, which was funded by TG Therapeutics. The ULTIMATE I and II studies were sponsored by TG Therapeutics.

Copies of this poster obtained by QR code are for reference only and may not be reused as a whole or in part without the permission of the authors and study sponsor.