Disability Changes in the Absence of Relapse in the Phase 3 ULTIMATE I and II Studies of Ublituximab Versus Teriflunomide in Participants With Relapsing Multiple Sclerosis

Sibyl Wray, MD,¹ Lawrence Steinman, MD,² Hans-Peter Hartung, MD,³⁻⁶ Edward J. Fox, MD, PhD,⁷ Enrique Alvarez, MD, PhD,⁸ Peiqing Qian, MD,⁹ Derrick Robertson, MD,¹⁰ DeRen Huang, MD, PhD,¹¹ Krzysztof Selmaj, MD, PhD,^{12,13} Daniel Wynn, MD,¹⁴ Jenna A. Bosco,¹⁵ Christopher A. Garner, PA-C,¹⁵ Bruce A. C. Cree, MD, PhD, MAS¹⁶

¹Hope Neurology, Knoxville, TN, USA; ²Stanford University, Stanford, CA, USA; ³Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ⁴Brain and Mind Centre, University of Sydney, Australia; ⁵Medical University of Vienna, Vienna, Austria; ⁶Palacký University Olomouc, Olomouc, Czech Republic; ⁷Central Texas Neurology Consultants, Round Rock, TX, USA; ⁸University of Colorado, Aurora, CO, USA; ⁹Swedish Medical Center, Seattle, WA, USA; ¹⁰University of South Florida, Tampa, FL, USA; ¹¹Columbus Neuroscience, Westerville, OH, USA; ¹²Center of Neurology, Lodz, Poland; ¹³University of Warmia and Mazury, Olsztyn, Poland; ¹⁴Consultants in Neurology, Northbrook, IL, USA; ¹⁵TG Therapeutics, New York, NY, USA; ¹⁶UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA

OBJECTIVE

• To evaluate disability changes in the absence of relapse with ublituximab in the ULTIMATE I and II studies

KEY FINDINGS

- In confirmed relapse-free participants, the mean change from baseline in Expanded Disability Status Scale (EDSS) score was significantly improved with ublituximab versus teriflunomide at Weeks 48 (-0.13 versus -0.06, respectively), 84 (-0.19 versus -0.08), and 96 (-0.19 versus -0.07) (P<0.05 for all)
- In participants without confirmed relapse, the least squares (LS) mean change from baseline at all postbaseline time points up to Week 96 was significantly improved with ublituximab versus teriflunomide, respectively, for:
- Multiple Sclerosis Functional Composite (MSFC): 0.557 versus 0.359, P=0.0095
 9-Hole Peg Test (9-HPT): 0.152 versus 0.025, P=0.0005

CONCLUSIONS

- In pooled post hoc analyses of ULTIMATE I and II, ublituximab was associated with significant improvement versus teriflunomide across multiple disability measures in the subset of participants without confirmed relapses during the study
- These results further support improved disability outcomes with ublituximab versus teriflunomide in participants with relapsing multiple sclerosis (RMS), independent of a

– Timed 25-Foot Walk (T25FW): 0.071 versus -0.025, *P*=0.0375

BACKGROUND

- Ublituximab is a novel monoclonal antibody that targets a unique epitope of CD20 and is glycoengineered for enhanced antibodydependent cellular cytotoxicity (ADCC)^{1,2}
- In vitro studies demonstrate that ublituximab has 25-30× higher ADCC relative to all other currently approved anti-CD20 therapies used in multiple sclerosis (MS)³
- Ublituximab is administered in lower doses and with shorter infusion times compared with other currently infused anti-CD20 therapies⁴
- ULTIMATE I (NCT03277261) and ULTIMATE II (NCT03277248) are identical, Phase 3, randomised, multicentre, double-blind, activecontrol studies evaluating the efficacy and safety of ublituximab versus teriflunomide in participants with RMS⁵
- ULTIMATE I and II met their primary endpoint, demonstrating a statistically significant reduction in annualised relapse rate for ublituximab compared with teriflunomide as well as significant improvements in the number of gadolinium-enhancing (Gd+) T1 lesions and the number of new/enlarging T2 lesions⁵
- Disability progression in MS has been proposed to occur as a result of both relapses and tissue injury independent of relapse⁶
- Long-term disability progression independent of relapse is common in patients with relapsing-remitting MS^{6,7}
- Studies have demonstrated that currently approved anti-CD20 therapies are associated with a reduction in disability progression independent of relapse^{8,9}
- Post hoc analyses of the Phase 3 ULTIMATE studies of ublituximab were conducted to evaluate disability progression in participants
 who did not have confirmed relapse during the studies

METHODS

- ULTIMATE I and II enrolled a total of 1094 adults from 10 countries with a diagnosis of RMS (relapsing-remitting or secondary-progressive) with disease activity⁵
- Participants received ublituximab 450 mg administered by 1-hour intravenous infusion every 24 weeks (following Day 1 infusion of 150 mg and Day 15 infusion of 450 mg) or teriflunomide 14 mg oral once daily for 96 weeks⁵
- Clinical evaluations were performed every 12 weeks⁵
- Pooled post hoc analyses evaluated measures of disease progression in the subset of participants with no Independent Relapse Adjudication Panel (IRAP)-confirmed relapses during the studies

RESULTS

• Baseline characteristics for participants without IRAP-confirmed relapse are shown in Table 1

Table 1. Demographics and Baseline Characteristics in Participants Without

Figure 2. Change From Baseline in MSFC Score in Participants Without IRAP-Confirmed Relapse

IRAP-Confirmed Relapse	

Mean ± standard deviation or %	Teriflunomide (n=406)	Ublituximab (n=473)	
Age, years	37.4±9.2	35.1±8.5	
Sex, female, %	66.7	61.7	
Time since MS diagnosis, years	4.6±5.0	4.8±5.3	
Duration of MS since first symptoms, years	7.0±6.1	7.2±6.3	
Number of relapses in last 12 months	1.3±0.7	1.3±0.6	
Number of relapses in last 24 months	1.8±1.0	1.8±0.9	
Time since most recent relapse, months	6.3±4.6	7.1±8.3	
EDSS score at screening	2.8±1.2	2.8±1.2	
T2 lesion volume, mL	15.3±17.7	15.1±15.0	
Number of T2 lesions	59.3±35.7	64.6±40.4	
Participants free of Gd+ T1 lesions, %	55.9	52.4	
Safety population. EDSS, Expanded Disability Status Scale; Gd+, gadolinium-enhancing; IRAP, Independent Relapse Adjudication Panel; MS, multiple sclerosis.			

In confirmed relapse-free participants, the mean change from baseline in EDSS score was significantly improved with ublituximab versus teriflunomide at Weeks 48 (-0.13 versus -0.06), 84 (-0.19 versus -0.08), and 96 (-0.19 versus -0.07) (*P*<0.05 for all) (Figure 1)

Figure 1. Change From Baseline in EDSS Score in Participants Without IRAP-Confirmed Relapse

Pooled post hoc analysis. Modified intention-to-treat population. Based on mixed-model repeated measures of the change from baseline at all postbaseline time points. The model includes treatment, study, region, baseline EDSS score strata, visit, treatment-by-visit interaction, and baseline value as covariates, and uses an unstructured covariance matrix, restricted maximum likelihood estimation, and the Satterthwaite method for degrees of freedom. EDSS, Expanded Disability Status Scale; IRAP, Independent Relapse Adjudication Panel; LS, least squares; MSFC, Multiple Sclerosis Functional Composite.

Figure 3. Change From Baseline in 9-HPT Score in Participants Without

Teriflunomide

Other disability measurements also demonstrated improvement with ublituximab versus teriflunomide in confirmed relapse-free participants for all postbaseline time points up to Week 96: MSFC (Figure 2), 9-HPT (Figure 3), and T25FW (Figure 4)

REFERENCES 1. Le Garff-Tavernier M, et al. *Leukemia*. 2014;28(1):230-233. **2**. Babiker HM, et al. *Expert Opin Investig Drugs*. 2018;27(4):407-412. **3**. Alvarez E, et al. Presented at: CMSC; 1-4 June 2022; National Harbor, MD, USA. Oral presentation DMT03. **4**. Steinman L, et al. Presented at: ECTRIMS; 13-15 October 2021; Virtual. Oral presentation 117. **5**. Steinman L, et al. *N Engl J Med*. 2022;387(8):704-714. **6**. Cree BAC, et al. *Ann Neurol*. 2019;85(5):653-666. **7**. Kappos L, et al. *Mult Scler*. 2018;24(7):963-973. **8**. Kappos L, et al. *JAMA Neurol*. 2020;77(9):1132-1140. **9**. Kappos L, et al. Presented at: AAN; 17-21 April 2021; Virtual. Poster P15.087.

Pooled post hoc analysis. Modified intention-to-treat population. Based on mixed-model repeated measures of the change from baseline at all postbaseline time points. The model includes treatment, study, region, baseline EDSS score strata, visit, treatment-by-visit interaction, and baseline value as covariates, and uses an unstructured covariance matrix, restricted maximum likelihood estimation, and the Satterthwaite method for degrees of freedom. 9-HPT, 9-Hole Peg Test; EDSS, Expanded Disability Status Scale; IRAP, Independent Relapse Adjudication Panel; LS, least squares.

Pooled post hoc analysis. Modified intention-to-treat population. Based on mixed-model repeated measures of the change from baseline at all postbaseline time points. The model includes treatment, study, region, baseline EDSS score strata, visit, treatment-by-visit interaction, and baseline value as covariates, and uses an unstructured covariance matrix, restricted maximum likelihood estimation, and the Satterthwaite method for degrees of freedom. EDSS, Expanded Disability Status Scale; IRAP, Independent Relapse Adjudication Panel; LS, least squares; T25FW, Timed 25-Foot Walk.

ACKNOWLEDGEMENTS The authors thank the participants and their families for participating in the ULTIMATE I and II studies. The authors also thank Apollo Medical Communications for providing medical writing and editorial support, which was funded by TG Therapeutics. The ULTIMATE I and II studies were sponsored by TG Therapeutics.

Copies of this poster obtained by QR code are for reference only and may not be reused as a whole or in part without the permission of the authors and study sponsor.

Poster P295