Pharmacodynamics of B-Cell Depletion and Pharmacokinetics of the Novel Anti-CD20 Monoclonal Antibody Ublituximab in Patients With Relapsing Multiple Sclerosis

Edward J. Fox, MD, PhD,¹ Lawrence Steinman, MD,² Hans-Peter Hartung, MD,³⁻⁶ Enrique Alvarez, MD, PhD,⁷ Peiqing Qian, MD,⁸ Sibyl Wray, MD,⁹ Derrick Robertson, MD,¹⁰ DeRen Huang, MD, PhD,¹¹ Krzysztof Selmaj, MD, PhD,^{12,13} Daniel Wynn, MD,¹⁴ Michael S. Weiss,¹⁵ Jenna A. Bosco,¹⁵ Sean A. Power,¹⁵ Koby Mok, PhD,¹⁵ Lily Lee, PhD,¹⁵ Bruce A. Cree, MD, PhD, MAS¹⁶

¹Central Texas Neurology Consultants, Round Rock, TX; ²Stanford University, Stanford, CA; ³Heinrich Heine University Düsseldorf, Düsseldorf, Germany; ⁴Brain and Mind Centre, University of Sydney, Sydney, Australia; ⁵Medical University of Vienna, Vienna, Austria; ⁶Palacký University Olomouc, Olomouc, Czech Republic; ⁷University of Colorado, Aurora, CO; Swedish Medical Center, Seattle, WA; Hope Neurology, Knoxville, TN; 10University of South Florida, Tampa, FL; 11Center for Multiple Sclerosis, Mount Carmel Health System, Westerville, OH; 12University of Warmia and Mazury, Olsztyn, Poland; ¹³Center of Neurology, Lodz, Poland; ¹⁴Consultants in Neurology, Northbrook, IL; ¹⁵TG Therapeutics, New York, NY; ¹⁶UCSF Weill Institute for Neurosciences, San Francisco, CA

OBJECTIVES

 To evaluate the pharmacodynamics (PD) of B-cell depletion with ublituximab in the Phase 3 ULTIMATE I and II studies and the pharmacokinetics (PK) of ublituximab treatment

KEY FINDINGS

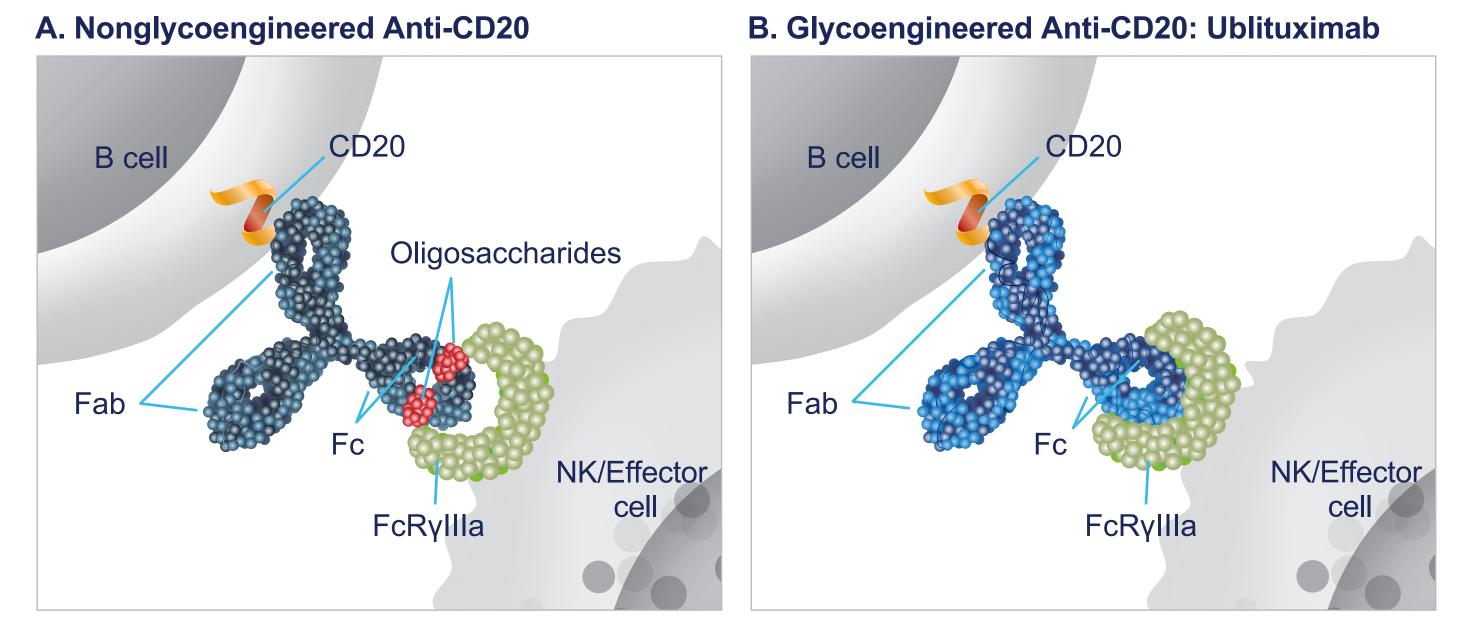
- Starting at Week 1 Day 2, patients had a notable decrease from baseline in the mean number of CD19+ B cells (96.2% reduction), which remained consistent through Week 96 (97.6% reduction)
- Prior to the first open-label extension (OLE) infusion, an average of 55 weeks after the last infusion, mean B-cell numbers had increased to 23.8% of baseline

CONCLUSION

 In ULTIMATE I and II, peripheral B-cell numbers declined rapidly after the first ublituximab infusion and remained low during treatment, which is consistent with ublituximab's mechanism of action

REFERENCES

- 1. Le Garff-Tavernier M, et al. *Leukemia*. 2011;25(1):101-109.
- 2. Babiker HM, et al. Expert Opin Investig Drugs. 2018;27(4):407-412. 3. Ferrara C, et al. *Proc Natl Acad Sci U S A*. 2011;108(31):12669-12674.
- 4. Sun Y, et al. J Biol Chem. 2021;297(1):100826
- 5. de Romeuf C, et al. *Br J Haematol*. 2008;140(6):635-643.
- 6. Fox E, et al. Mult Scler. 2021;27(3):420-429. 7. Steinman L, et al. Presented at: ECTRIMS; October 13-15, 2021; Virtual. Oral presentation 117


ACKNOWLEDGMENTS

The authors thank the patients and their families for participating in the ULTIMATE I and II studies. The authors also thank Apollo Medical Communications for providing medical writing and editorial support, which was funded by TG Therapeutics. The ULTIMATE I and II studies were sponsored by TG Therapeutics.

BACKGROUND

- Ublituximab is a novel monoclonal antibody that targets a unique epitope of CD20¹
- Ublituximab is glycoengineered to exclude certain sugar molecules normally expressed on the antibody. Removal of these sugar molecules enhances affinity for all variants of FcyRIIIa receptors, which confers greater antibody-dependent cellular cytotoxicity (ADCC) and enhances the potency of ublituximab (Figure 1)^{1,2}

Figure 1. Ublituximab Is Glycoengineered to Enhance ADCC

(A) In nonglycoengineered anti-CD20 antibodies, the core fucose of Fc-linked oligosaccharides sterically blocks interaction with FcγRIIIa, reducing affinity.^{3,4} (B) Ublituximab is glycoengineered to have a low fucose content in the Fc region, which allows for closer interaction and enhanced affinity for all variants of FcyRIIIa.4-6

- ADCC, antibody-dependent cellular cytotoxicity; NK, natural killer.
- Ublituximab demonstrated 100 times greater natural killer cell-mediated ADCC in vitro than rituximab¹
- Ublituximab is administered in lower doses and with shorter infusion times compared with other currently infused anti-CD20 therapies⁷
- ULTIMATE I (NCT03277261) and ULTIMATE II (NCT03277248) were identical, Phase 3, randomized, multicenter, double-blind, active-control studies that evaluated the efficacy and safety of ublituximab vs teriflunomide in patients with relapsing multiple sclerosis (RMS)⁷
- ULTIMATE I and II met their primary endpoint, demonstrating a statistically significant reduction in annualized relapse rate for ublituximab compared with teriflunomide⁷
- Ublituximab also provided significant improvements in the number of gadolinium-enhancing T1 lesions and the number of new/enlarging T2 lesions, and improvements in the proportion of patients with no evidence of disease activity vs teriflunomide at 96 weeks⁷

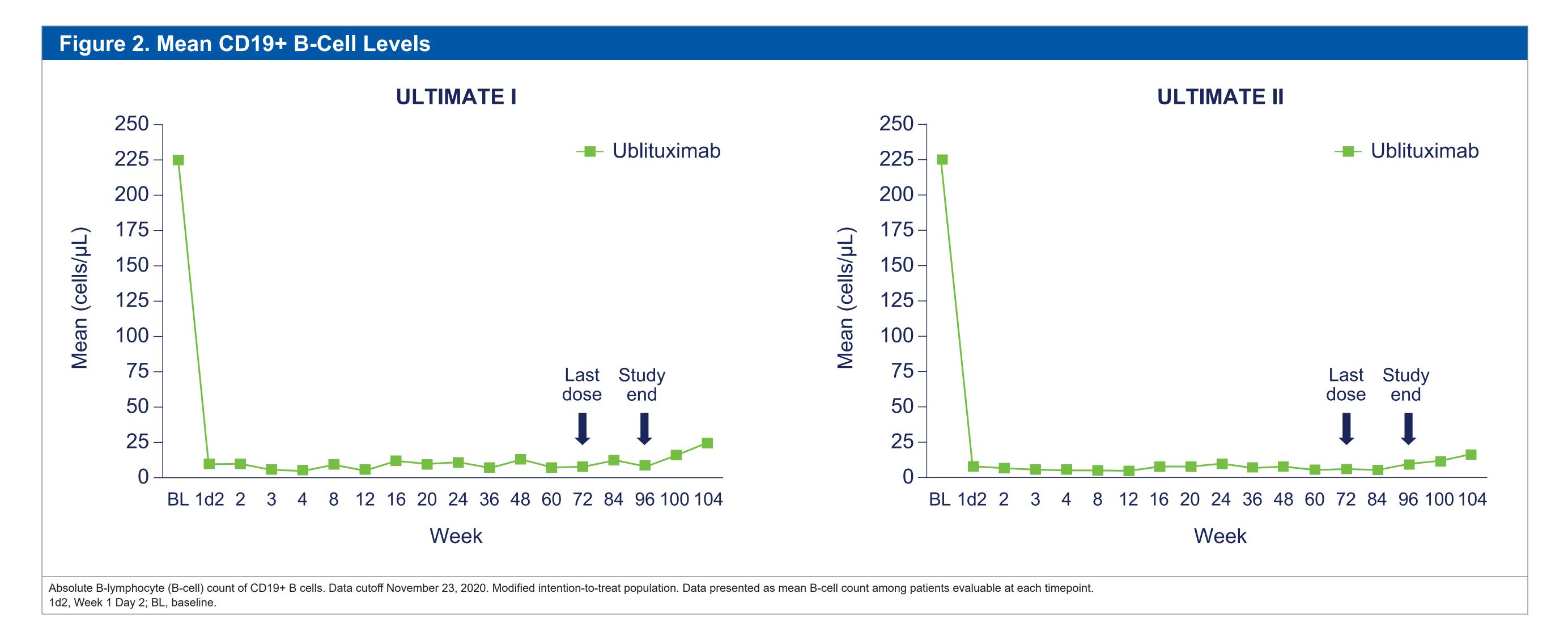
METHODS

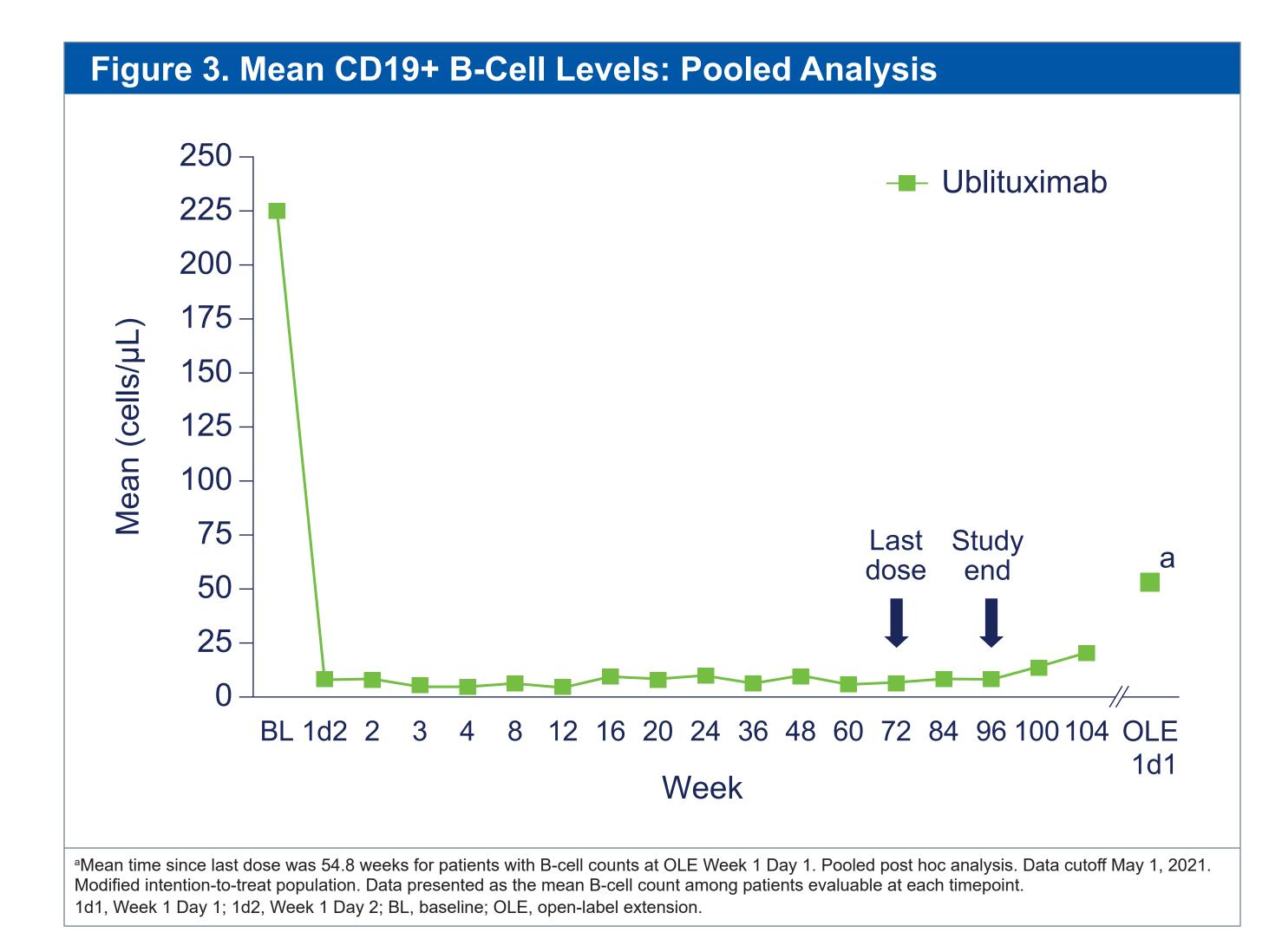
- ULTIMATE I and II enrolled a total of 1094 adult patients from 10 countries with a diagnosis of RMS (relapsing-remitting or secondary-progressive) with disease activity⁷
- Patients received ublituximab 450 mg administered by 1-hour intravenous (IV) infusion every 24 weeks (following Day 1 infusion of 150 mg and Day 15 infusion of 450 mg) or teriflunomide 14 mg oral once daily for 96 weeks⁷
- The last dose of ublituximab was given at Week 72, with retreatment starting on average (mean) 54-55 weeks later for patients enrolling in the OLE
- PD analyses were performed in the modified intention-to-treat population at prespecified intervals
- PK data were evaluated in patients enrolled in the Phase 2 and Phase 3 studies who received ≥1 ublituximab dose
- Ublituximab data were combined with a previous analysis set including two Phase 1 studies and one Phase 3 study in patients with hematologic malignancies, primarily chronic lymphocytic leukemia, for the population PK (PopPK) analysis of ublituximab
- The PopPK dataset included 5624 quantifiable ublituximab serum concentrations from 591 patients with RMS. The combined dataset included a total of 7485 quantifiable ublituximab serum concentrations from 895 patients
- The individual post hoc estimates from the final PopPK model were used to compute steady-state exposure metrics (maximum serum ublituximab concentration [C_{max}]) over a 24-week interval. Steady state was assumed to be achieved following the Week 48 dose. C_{max} for Day 1 was also derived. The individual terminal half-life of ublituximab was calculated and summarized using descriptive statistics

RESULTS

B-Cell Depletion by Study

- Mean B-cell levels for the individual ULTIMATE I and ULTIMATE II studies are shown in Figure 2
- Both studies showed a consistent reduction in B cells starting at Day 2 that was maintained throughout the studies


B-Cell Depletion: Pooled Analysis


- In a pooled post hoc analysis of ULTIMATE I and II (N=543), the mean number of CD19+ B cells at baseline in patients receiving ublituximab was 225.0 cells/µL
- Starting at Week 1 Day 2, ublituximab patients had a notable decrease from baseline in the mean number of CD19+ B cells (-216.4 cells/µL [96.2% reduction]), which remained consistent through Week 96 (-219.6 cells/µL [97.6% reduction]), 24 weeks after the last infusion (Figure 3, Table 1)
- Prior to the first OLE infusion, an average of 55 weeks after the last infusion, mean B-cell numbers had increased to 23.8% of baseline

 The proportion of ublituximab-treated patients with B-cell counts remaining suppressed to ≥95% of baseline levels by Week 55 (entry into OLE) was 34.5%

Pharmacokinetics

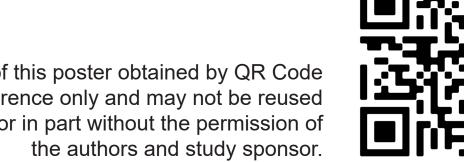

- The PK of ublituximab following repeated IV infusions was adequately described by a 2-compartment model with first-order elimination. Ublituximab exposures increased in a dose-proportional manner (ie, linear PK) over the dose range of 150-600 mg in patients with RMS
- Clearance (interindividual variability) was 11.3 mL/h (38.1%)
- Half-life (90% confidence interval) was 21.8 (21.4-22.1) days
- Median time to reach steady state was 15.5 weeks
- Median C_{max} ratio of Week 24 to Day 1 was 3.04 (range, 3.00-3.42), consistent with the 3-fold increase in the amount of the dose and indicative of no accumulation. Similarly, the C_{max} ratio of Week 48 to Week 24 was 1, indicative of no accumulation

Table 1. B-Cell Levels Over Time		
CD19+ B Cells (cells/µL)	Mean	Min/Max
Baseline	225.0	16/882
Week 1 Day 2	8.6	1/183
Week 2	8.2	1/553
Week 12	4.6	0/68
Week 24	10.1	1/159
Week 48	10.2	1/269
Week 72	6.5	1/199
Week 96	8.4	1/571
OLE Week 1 Day 1 ^a	53.5	0/552

Data cutoff May 1, 2021. Modified intention-to-treat population. Data presented as the absolute B-cell count among patients evaluable at each timepoint. Max, maximum; Min, minimum; OLE, open-label extension.

