PHASE I/II STUDY OF UMBRALISIB, UBLITUXIMAB, AND PEMBROLIZUMAB IN PATIENTS WITH RELAPSED OR REFRACTORY CHRONIC LYMPHOCYTIC LEUKEMIA AND RICHTER'S TRANSFORMATION: 5-YEAR FOLLOW-UP

Lindsey E. Roeker, MD¹, Mazyar Shadman, MD, MPH², Jakub Svoboda, MD, PhD⁴, Colleen Dorsey, BSN, RN¹, Gail Panton, BSN, RN¹, Sunita D. Nasta, MD, FACP³, Daniel J. Landsburg, MD³, Beth Morrigan², Jill Elwell², Kaitlin Kennard, RN, BSN³, Andrew D. Zelenetz, MD, PhD¹, Michael S. Weiss⁵, Anthony R. Mato, MD, MSCE³

¹CLL Program, Leukemia Service, Division of Hematologic Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY; ²Fred Hutchinson Cancer Center, Versity of Pennsylvania, Philadelphia, PA; ⁴Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia PA; ⁵TG Therapeutics Inc. New York, NY

For questions contact: roekerl@mskcc.org

Background / Rationale: PD-1/PD-L1 axis

 Pre-clinical data support a major role for the PD-1 and PD-L1/PD-L2 axis in mediating immune evasion in CLL. However, there is a disconnect between promising preclinical data and clinical data with anti-PD-1 monotherapy.

• A key interaction exists between PI3K signaling and immune checkpoint surveillance by which inhibition of PI3K decreases PD-L1 tumor expression, suggesting potential synergistic activity with PD-1 + PI3K blockade.

2014. Ding et al., *Blood* 2017. Rogers et al., *BJH* 2018.

Umbralisib + Ublituximab ("U2")

Umbralisib: an oral, once-daily, novel, inhibitor of PI3Kδ and casein kinase-1epsilon (CK1ε)

Phase 2/3 dose: 800 mg QD

Ublituximab: glycoengineered anti-CD20 monoclonal antibody

Enhanced ADCC compared to rituximab

¹Burris et al., *Lancet Oncology* 2018

Rationale

Umbralisib was selected due to preclinical data showing minimal effect on T-regs and clinical experience showing favorable toxicity profile

Study	Efficacy				
CLL (Mayo), n=16	ORR 0%, PFS 2.4 months, OS 11.2 months				
RT (Mayo), n=9	ORR 44%, PFS 5.4 months, OS 10.7 months				
Real world data (OSU), n=10	90% failure rate in RT, OS 2 months				
Grzywnowicz et al., <i>PLOS</i> 2012. Brusa et al., <i>Haem</i> 2012. Palma et al., <i>Haem</i> 2017. Ringelstein-Harlev et al. <i>Blood</i>					

Umbralisib ¹	Idelalisib ¹	Duvelisib ¹			
F N N N N N N N N N N N N N N N N N N N					
K _d (nM)					
>10000	600	40			
>10000	19	0.89			
1400	9.1	0.21			
6.2	1.2	0.047			

>30,000

Results

Demographics

Chronic Lymphocytic Leukemia

Evaluable for Safety & Efficacy, n Median Age, years (range) 70 (60 - 81) Male/Female ECOG, 0/1/2 5/6/0 Prior Therapy Regimens, median (range) 1(1-4)Prior BTK (ibrutinib or acalabrutinib), n (%) 7 (64%) Refractory to prior BTK 6/7 (86%) Refractory to immediate prior therapy, n (%) At least 1 high risk feature 8 (73%) 6 (55%) ≥2 high risk features, n (%) 17p del/TP53 mutated, n (%) 3 (27%) 5 (45%) Complex Karyotype, n (%) NOTCH1/ATM/SF3B1mut, n (%) 5 (45%) IGHV Unmutated, % (n/N) 57% (4/7)

Richter's Transformation

Evaluable for Safety, n	RT, N=9			
Evaluable for Efficacy [†] , n	8			
Median Age, years (range)	66 (53 - 73)			
Male/Female	6/3			
ECOG, 0/1/2	3/5/1			
Prior Therapy Regimens, median (range)	5 (1 – 9)			
Prior ibrutinib	8 (89%)			
Refractory to prior ibrutinib	8/8 (100%)			
Prior Chemo Regimen	9 (100%)			
Prior idelalisib + rituximab	2 (22%)			
Prior venetoclax	3 (33%)			
Prior CAR-T / Allo Transplant	3 (33%)			
Refractory to immediate prior therapy	8 (89%)			
Bulky Disease, n (%)	8 (89%)			
†1 RT patient not evaluable – treated on CLL regimen				

Disposition and Safety

Enrollment by Cohort

Pembro Dose	CLL	RT	Total
100 mg	5	4	9
200 mg	6	5	11

- 1 DLT at 200 mg pembro dose (transient elevated LFT - resolved); MTD not reached
- Grade 3/4 LFT elevations occurred in 4 patient (20%)
- No Grade 3/4 diarrhea
- 1 patient had grade 5 colitis secondary to c-diff, unrelated to therapy
- Median follow-up for all patients: 48 mos (54 mos for CLL cohort)
- No patient had their pembro dose reduced while 4 patients had their umbralisib dose reduced§

Includes neutropenia & neutrophil count decreased MedDRA preferred terms §AEs leading to umbralisib dose reductions include: asthenia/fatigue (G3, 1 patient), neutrophil count decrease (G3, 1 patient), ALT increase (G2, 1 patient), and headache (G2, 1 patient)

Adverse Events for (All Causality) >20% (N=20) Grade ≥3

Study Design

Phase I/II dose-escalation (3+3 design), multicenter study to assess the safety & efficacy of U2 + pembrolizumab in patients with R/R CLL and RT (NCT02535286)

ΡΙ3Κγ

ΡΙ3Κδ

CK1ε

- Cohort 1: Pembrolizumab 100 mg
- Cohort 2: Pembrolizumab 200 mg

Correlative studies: Peripheral blood and/or bone marrow samples were collected at screening, during cycle 2 and cycle 6

Study Objectives

Primary Objective

• To determine the safety of U2 + pembro in CLL and RT patients

Key Secondary Objectives

- To evaluate efficacy (ORR, PFS) iwCLL (2008) & Cheson (2007)
- To describe the immunophenotypic profiles of B and T cells

Key Eligibility Criteria

- CLL: progressed on at least one prior therapy
- Mid-study amendment required CLL pts to be BTK refractory (PD within 6 mos of prior BTK)

>30,000

- RT: chemo-immunotherapy refractory or not eligible for high-dose chemo
- No limit on # of prior therapy treatment regimens
- ANC > 750/μL, platelet count > 40,000/μL
- Prior exposure to PD-1 or PI3K inhibitor was NOT an exclusion

Correlatives: T-reg Population

Circulating FoxP3+ CD4+ T cell levels do not change significantly in CLL study patients

7 (64%)

FoxP₃ Column Analysis

FoxP3+ CD4 Cells vs. Time

Bulky Disease, n (%)

Efficacy: ORR in CLL

Efficacy: ORR in RT

Note: Waterfall plot includes all patients with at least one evaluable post-baseline scan

Treatment Schedule

- Efficacy assessed at the end of Cycles 2, 6 & 12. After Month 12, efficacy is assessed per investigator discretion.
- C1D1 dose split between D1 and D2

RT Patients Maintenance Induction (28 day cycle) (28 day cycle) **UBLITUXIMAB** Cycle 1 (D1, 8, 15 of C1, D1 of C2-4, D1 of C7, C10, & Q3 cycles) **DLT Period** Cycle 2 Cycle 3 Cycle 4 Cycle 7 Cycle 10 **UMBRALISIB DAILY** (Starting on C1D1) **PEMBROLIZUMAB** (D3 of Cycle 1, D2 of Cycles 2-4)

- Efficacy assessed at the end of Cycles 2 & 4 and Q3 cycles thereafter until Month 12. After Month 12, efficacy assessed per investigator
- Cycle 1D1 dose split between D1 and D2

Efficacy & Tolerability: Duration of Exposure

Case Study: RT Patient

62 yo Male **Prior Treatment History**

for CLL:

- **2008:** PCR **2011:** BR
- **2013:** FCR
- **2013:** Ofatumumab + Fludara + Cyclophosphamide
- 2014: Alemtuzumab **2014:** Allo Transplant
- **Prior Treatment for RT:**

Nov 2014: R-CHOP + **Ibrutinib**

- PD while on Ibrutinib in 2017
- Target Lesion SPD = 45 cm

Cohort 1 - 100 mg End of Cycle 2: 76%↓ - PR

- End of Cycle 5: 78%↓ PR End of Cycle 8: Complete Response
- PET-negative by Lugano Criteria (Cheson 2014)
- Tolerated U2 + Pembro well
- 1 G3 event of Hypophosphatemia (possibly related)

Started U2 + Pembro

- 1 G3 event of Hyperglycemia (not related)
- No umbralisib dose
- modifications required

Subject was in CR for 29.5 mos

Conclusions

Triplet combination of umbralisib + ublituximab ("Ú2") + pembrolizumab was well tolerated

 Immune mediated toxicities were not increased above what would be expected with either umbralisib or pembrolizumab alone Responses were durable in BTK refractory, high-

risk pts, including two durable CRs in RT pts Final efficacy analysis suggests that CLL pts who

achieve less than CR with a checkpoint inhibitorcontaining regimen can achieve durable remissions and that time-limited schedules should be explored

Maintenance of T-regs throughout therapy may explain limited autoimmune sequelae

Acknowledgements

Thank you to the patients and their families for their participation