Phase I/II Study of Umbralisib in Combination with Ublituximab and Venetoclax (U2-Ven) in Patients with Relapsed/Refractory CLL

Paul M. Barr, MD¹, Brian T. Hill, MD, PhD², Shuo Ma MD, PhD³, Andrea M. Baran, MS¹, Andrew Bui, MS¹, Phil Meacham, MS¹, Ashley Ochaba², Jane L. Liesveld MD¹, Deborah A. Mulford, MD¹, Peter Sportelli, BS⁴, Hari P. Miskin, MS⁴, Michael S. Weiss⁴, Jonathan W. Friedberg, MD¹, Clive S. Zent, MD¹

¹Wilmot Cancer Institute, University of Rochester, Rochester, NY; ²Cleveland Clinic, Cleveland, OH; ³Northwestern University, Chicago, IL; ⁴TG Therapeutics, Inc., New York, NY

> MEDICINE of the Highest Order

Background / Rationale: Venetoclax

- Preclinical additive to synergistic cytotoxicity between inhibition of BCR signaling and BCL2
- Targeting PI3K may prevent drug resistance to BCL2 inhibition
- Phase 1/2 study evaluating U2-Ven combination in a multicenter setting
 - PI3K + CD20 inhibition ideal to minimize TLS risk for BTK inhibition failures
 - Achieve MRD negativity in relapsed refractory CLL patients

Cervantes-Gomez F et al. *Cancer Res.* 2015;21:3705-3715 Choudhary et al. *Cell Death Dis* 2015 Jan 15;6:e1593

Figure adapted from Riches et al., 2011

Background / Rationale: Umbralisib + Ublituximab (U2)

- Umbralisib: novel PI3K δ /CK1 ϵ dual inhibitor, with unique structure and improved tolerability¹
 - Preclinical: Greater retention of T-reg suppressive capacity compared to idelalisib & duvelisib²
 - Clinical: Integrated analysis of long-term safety: 0 demonstrates low rates of immune-mediated toxicity³
- Ublituximab: glycoengineered anti-CD20 monoclonal antibody
 - Enhanced ADCC compared to rituximab
- U2: Phase 1 trial⁴
 - Low rates of immune mediated AEs
 - 62% ORR and median PFS of 28 months \bigcirc

¹Burris et al., Lancet Oncology 2018; ²Maharaj et al., ASH 2017; ³Davids et al., EHA 2018; ⁴Lunning et al., Blood 2019

ha	Umbralisib	Idelalisib	Duvelisib		
'e	$F \xrightarrow{O} \xrightarrow{F} \\ O \xrightarrow{V} \\ O \xrightarrow{V} \\ V \xrightarrow{N} \\ H_2 \\ N \\ H_2 \\ H_2$				
Isoform	K _d (nM)				
ΡΙ3Κα	>10 000	600	40		
ΡΙ3Κβ	>10 000	19	0.89		
ΡΙ3Κγ	1400	9.1	0.21		
ΡΙ3Κδ	6.2	1.2	0.047		
CK1ε	180	>30 000	>30 000		

Study Design and Objectives

Study Design

- Multi-center Phase I/II dose-escalation (3+3 design) study to assess the safety & efficacy of U2 + venetoclax in patients with R/R CLL
 - Fixed dose ublituximab (900 mg), escalating doses of umbralisib (600 mg and 800 mg)
 - Standard dosing of venetoclax (5-week ramp up to 400 mg)

Primary objective

To evaluate the safety of venetoclax addition after U2 induction

Secondary objectives

- Clinical efficacy as defined by CR rate and PFS (iwCLL 2018)
- MRD negativity rate after 12 cycles of therapy
 - Centrally conducted 8-color flow cytometry

Study Design: Treatment Schedule

Cycle = 28 Days

Key Eligibility Criteria

CLL/SLL: progressed after at least one prior therapy and requiring treatment

- Mid-study amendment required CLL pts to be BTKi intolerant or refractory (PD within 6 mos of prior BTK)
- 21 day washout from prior therapy except prior BTK inhibitor (longer of 3 days or 5 half-lives)
- ANC > 750/μL, platelet count > 40,000/μL
- CrCl>50 mL/min for Phase I and >30 mL/min for Phase II
- Prior exposure to BCL2 or PI3K inhibitor was NOT an exclusion

Baseline Characteristics

Evaluable for Safety, n	27
Evaluable for Efficacy, n	23†
Median Age, years (range)	63 (43 - 83)
Male/Female	18/9
ECOG, 0/1/2	3 / 22 / 2
Median Creatinine Clearance, mL/min (range)	75 (45-135)
Prior Therapy Regimens, median (range)	1 (1 – 5)
Refractory to immediate prior therapy, n (%)	7 (26%)
Prior anti-CD20, n (%)	21 (78%)
Prior chemoimmunotherapy, n (%)	18 (67%)
Prior BTKi (ibrutinib / acalabrutinib), n (%)	13 (48%)
Refractory to prior BTK	7/13 (54%)
BTK or PLCy mutation detected	5/7 (71%)
Prior PI3Ki, n (%)	2 (7%)
Prior venetoclax, n (%)	1 (4%)

Molecular Aberrations

At least 1 high risk feature (del17p, del11q, TP53mut, NOTCH1mut)	14 (52%)
11q deletion, n (%)	6/27
17p del/TP53 mutation, n (%)	5/27
NOTCH1 mutation, n (%)	5/17
SF3B1 mutation, n (%)	1/17
IGHV unmutated, n (%)	13/21

⁺3 patients too early to evaluate;

1 patient off study prior to first response assessment

Overall Disposition

Enrollment by Cohort

Cohort	Umbralisib Dose	n
Dose level 1	600 mg	3
Dose level 2	800 mg	6
Phase II	800 mg	18

Dose Modifications

Agent	Reduction (n)	Withdrawn (n)	
Ublituximab	0	2	
Umbralisib	1	2	
Venetoclax	1	1	

- DLT period: cycles 4 and 5
 - o 1 DLT at 800 mg
 - Lower GI bleed, Cycle 5 (not related)
 - Resolved in 3 days
- MTD not reached

Adverse Events (All Causality) >15% (N=27)

	All Grades		Grade 3/4	
	N	%	Ν	%
Infusion reaction	18	67%	2	7%
Neutropenia	15	56%	5	19%
Leukopenia	13	48%	4	15%
Creatinine increase	13	48%	-	-
Thrombocytopenia	13	48%	-	-
Anemia	12	44%	1	4%
Nausea	10	37%	-	-
AST increase	10	37%	-	-
Diarrhea	9	33%	1	4%
Alkaline phos increase	8	30%	-	-
Fatigue	8	30%	-	-
ALT increase	7	26%	-	-
Hypocalcemia	7	26%	-	-
Rash	7	26%	1	4%
Hyperkalemia	5	19%	-	-

- Additional Grade 3/4 AEs:
 - o DVT (2)
 - Lower GI bleed (1)
 - Supraventricular tachycardia (1)
 - o Anxiety (1)
 - Hypophosphatemia (1)
 - o Dyspnea (1)
- No TLS or lab tumor lysis
- No grade 3/4 LFT elevations

3 Cycles of U2 Induction Reduces Venetoclax TLS risk

- After 3 cycles of ublituximab and umbralisib debulking:
 - No TLS High-Risk patients remaining
 - No patients developed clinical or laboratory TLS during venetoclax ramp up

MEDICINE of THE HIGHEST ORDER

ALC Reduction Through Cycle 6

Mean % Lymph Node Reduction from Baseline

MEDICINE of THE HIGHEST ORDER

12

Efficacy: Response and MRD

Cycle 3 & 7 Assessments were by CT only without BM, therefore CR could not be assessed

Efficacy & Tolerability: Duration of Exposure

Efficacy: Progression-free survival (n=27)

Conclusions

- Umbralisib, ublituximab and venetoclax is well tolerated at the Phase 2 doses
 - U2 induction mitigates TLS risk
 - Manageable myelosuppression and GI effects resulting in low rate (7%) of discontinuation due to AE
- Early evidence of MRD negativity with 12 cycles of therapy
 - o 9/9 and 7/9 undetectable in peripheral blood and marrow respectively
- Relapsed/refractory CLL enrollment is ongoing in BTK inhibitor treated patients
 - Expansion cohorts for Richters transformation and mantle cell lymphoma
- ULTRA-V Phase 2 Study of U2-Ven regimen ongoing in treatment naïve and relapsed/refractory CLL

Acknowledgments

Thank you to the patients and their families for their participation.

Participating Centers:

MEDICINE of THE HIGHEST ORDER

MEDICINE of THE HIGHEST ORDER