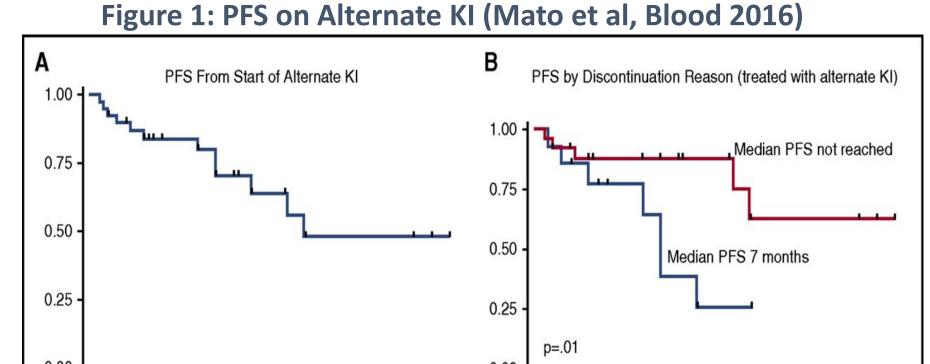
A Phase 2 Study to Assess the Safety and Efficacy of Umbralisib (TGR-1202)


in Patients with Chronic Lymphocytic Leukemia (CLL) who are Intolerant to Prior BTK or Pl3Kδ Inhibitor Therapy

Anthony R. Mato, MD¹, Stephen J. Schuster, MD², Nicole Lamanna, MD³, Jacqueline C. Barrientos, MD¹, Frederick Lansigan, MD¹, Alan P. Skarbnik, MD¹2, Ian W. Flinn, MD, PhD¹, Frederick Lansigan, MD¹1, Alan P. Skarbnik, MD¹2, Ian W. Flinn, MD, PhD¹3, Ian W. Flinn, MD PhD¹3, Ian W. Flinn, MD¹4, Ian W. Flinn, MD¹4, Ian W. Flinn, MD¹5, Ian W. Flinn, MD²5, Ian W. Flinn, Gustavo A. Fonseca, MD¹³, Jeffrey J. Pu, MD, PhD¹⁴, Chaitra Ujjani, MD⁹, Jakub Svoboda, MD¹⁵, Colleen Dorsey, BSN, RN¹, Hanna Weissbrot, BS², Eline T. Luning Prak, MD, PhD², Patricia Tsao, MD, PhD², Dana Paskalis¹⁶, Peter Sportelli¹⁶, Hari P. Miskin, MS¹⁶, Michael S. Weiss¹⁶ and Danielle M. Brander, MD¹⁵

1Memorial Sloan-Kettering Cancer Center, New York, NY; 1 University of Pennsylvania Cancer Center, New York, NY; 5 Rorida Cancer Specialists/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, TN; 5 Rorida Cancer Specialists/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Research Institute, Fort Myers, FL; 6 Tennessee Oncology/Sarah Cannon Researc ⁸Swedish Cancer Institute, Seattle, WA; ⁹Georgetown University Hospital Lombardi Comprehensive Cancer Ctr., Syracuse, NY; ¹⁵Duke University of Rochester, NY; ¹⁵Duke University of Rochester, NY; ¹⁵Duke University Medical Ctr., Lebanon, NH; ¹⁶Horida Cancer Ctr., Syracuse, NY; ¹⁵Duke University of Rochester, NY; ¹⁶TG Therapeutics, Inc., New York, NY; ¹⁸Duke University of Rochester, NY; ¹⁸Duke University Medical Center, Durham, NC; ¹⁸TO Therapeutics, Inc., New York, NY; ¹⁹Duke University of Rochester, NY; ¹⁹Duke University Medical Ctr., Lebanon, NH; ¹⁹Duke University of Rochester, NY; ¹⁹Duke University Medical Ctr., Lebanon, NH; ¹⁹Duke University Medical Center, Durham, NC; ¹⁹Duke University of Rochester, NY; ¹⁹Duke University Medical Ctr., Lebanon, NH; ¹⁹Duke University Medical

Background / Rationale

- *Kinase inhibitor (KI) therapies such as ibrutinib are Umbralisib generally well tolerated, although intolerance is the most common reason for discontinuation in practice (~50% of discontinuations, Mato et al, Blood 2016, Annals Oncology 2017). Data show that KI-intolerant patients (pts) can be successfully treated with an alternate KI (Fig 1). It has also been reported that ibrutinib interruptions ≥ 8 days can negatively affect PFS (Barr et al, Blood 2017). Therefore, pts who discontinue a KI due to intolerance represent an unmet need.
- Fortunately, data suggest that alternate KIs can have non-overlapping toxicity profiles.

- Umbralisib (TGR-1202) is a next generation PI3Kδ inhibitor, with a unique structure and activity profile distinct from other PI3Kδ inhibitors, including:
- \clubsuit A differentiated safety profile from other PI3K δ inhibitors, notably with respect to hepatic toxicity and colitis observed to date;
- A prolonged half-life that enables once-daily dosing;
- \clubsuit High selectivity to the δ isoform of PI3K; and
- *Also targets casein kinase-1 epsilon (CK-1ε), a protein which may inhibit regulatory T-cell function

Comparison of Structure and Lipid Kinase Inhibition Profile

•						
Umbralisib	Idelalisib	Duvelisib				
F N N N N N N N N N N N N N N N N N N N	F O N N N N N N N N N N N N N N N N N N	CI O N N N N N N N N N N N N N N N N N N				
Class I Pl3K Class II Pl3K Class III Pl3K Class III Pl3K Type III Pl4K Type II Pl4K Type II PlP5K Type II PlP5K Type III PlP5K	Class I Pl3K Class II Pl3K Class III Pl3K Class III Pl3K Type III Pl4K Type II Pl4K Type II PlP5K Type III PlP5K Type III PlP5K Type III PlP5K	Class II PI3K Class III PI3K Class III PI3K Type III PI4K Type II PI4K Type II PIP5K Type III PIP5K Type III PIP5K				

DiscoverRx KinomeScan

Study Design/Methods

Phase II, multicenter, single-arm trial of umbralisib monotherapy in CLL pts who are intolerant to prior KI therapy (NCT02742090).

CLL Progression —— KI Intolerance

- *Enrollment: Up to 50 patients who have discontinued prior therapy with a BTK or PI3K δ inhibitor due to intolerance.
- *Peripheral blood samples were collected at screening for central analysis of high-risk cytogenetics and BTK/PI3K mutations/deletions.

Prior KI Therapy: BTK or PI3Kδ

Intolerance is defined as unacceptable toxicity where, in the opinion of the investigator, treatment should be discontinued in spite of optimal supportive care as a result of one of the following:

- ❖ 2 or more Grade ≥ 2 non-hematological toxicities
- ❖ 1 or more Grade ≥ 3 non-hematological toxicity
- ❖ 1 or more Grade 3 neutropenia with infection or fever or
- Grade 4 heme toxicity which persists to the point that the investigator chose to stop therapy due to toxicity NOT progression

Toxicity must have resolved to ≤ Grade 1 prior to umbralisib dosing

Study Objectives

Primary Objective To determine the PFS of umbralisib in CLL pts intolerant to prior BTK / PI3Kδ inhibitors

- **Secondary Objectives** To evaluate the ORR and duration of
- response (DOR) of umbralisib. To evaluate Time to Treatment Failure with
- umbralisib as compared to prior KI therapy. To evaluate the safety profile of umbralisib as compared to the prior KI therapy.

Key Eligibility Criteria

- CLL pts whose prior therapy with a BTK inhibitor (ibrutinib, acalabrutinib) or a PI3Kδ inhibitor (idelalisib, duvelisib) was d/c due to intolerance within 12 mos of C1/D1.
- Meets study KI Intolerance definition
- Off prior KI for at least 14 days following discontinuation w/o disease progression.
- * ANC > 1,000/μL, platelet count > 30,000/μL.

Results

Demographics

Required Tx within 6 mos of Prior KI, n

Evaluable for Safety, n	47	Gene	CLL related	
Evaluable for PFS [†] , n	46		variants	
Evaluable for Response*	22	ATM	9 (22%)	
Median Age, years (range)	71 (52 – 96)	ВТК	1 (2%)	
Male/Female	27 / 20	CDKN2A	2 (5%)	
ECOG, 0/1/2	21 / 22 / 4	MIR-16A	1 (2%)	
17p del, n (%)	7 (15%)	MLL2	3 (7%)	
11q del, n (%)	8 (17%)	NOTCH 1	4 (10%)	
IGHV Unmutated, n (%)	25 (53%)	PLCG2	2 (5%)	
Bulky Disease, n (%)	20 (43%)	RB1	2 (5%)	
Prior Therapy Regimens, median (range)	2 (1 – 7)	SF3B1	6 (15%)	
Prior BTK inhibitor, n	44 (94%)	SPEN	3 (7%)	
Prior PI3K inhibitor, n	7 (15%)			
Median Time on Prior KI, mos (range)	9 (1 – 38)	TP53	9 (22%)	
Median Time from D/C of Prior KI to		ZFHX3	1 (2%)	
Enrollment, mos (range)	3 (1 – 12)	Data available for 41/47 pts		
	0.0 (==0.1)			

[†]1 patient with confirmed Richter's Transformation at enrollment (not eligible); excluded from PFS analysis *Patients with progressive disease at study entry

36 (77%)

Adverse Event Leading to Prior BTK/PI3K Discontinuation

Intolerant AE on Prior TKI	Grade 2 (n)	Grade 3 (n)	Grade 4 (n)	Total # of events (n)
Rash	5	7		12
Arthralgia	3	5	1	9
Atrial Fibrillation	4	2	1	7
Bleeding	1	3		4
Fatigue	2	2		4
Anorexia/Weight Loss	3			3
Colitis	1	2		3
Congestive Heart Failure	1	1	1	3
Pneumonitis	2	1		3
Bruising	2			2
Diarrhea	1	1		2
Hypertension	2			2
Nausea	2			2
Cough	1			1
Dizziness	1			1
Edema	1			1
GI Toxicity	1			1
Infection		1		1
Malaise	1			1
Mental Status Change	1			1
Myalgia	1			1
Pericardial Effusion			1	1
Respiratory failure			1	1
Thalamic Lesions		1		1
Transaminitis	1			1
TOTAL	37	26	5	68

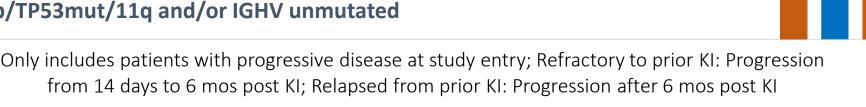
Safety

All Grade / All Causality AE's >10% or Grade 3/4 > 5% (N = 47)

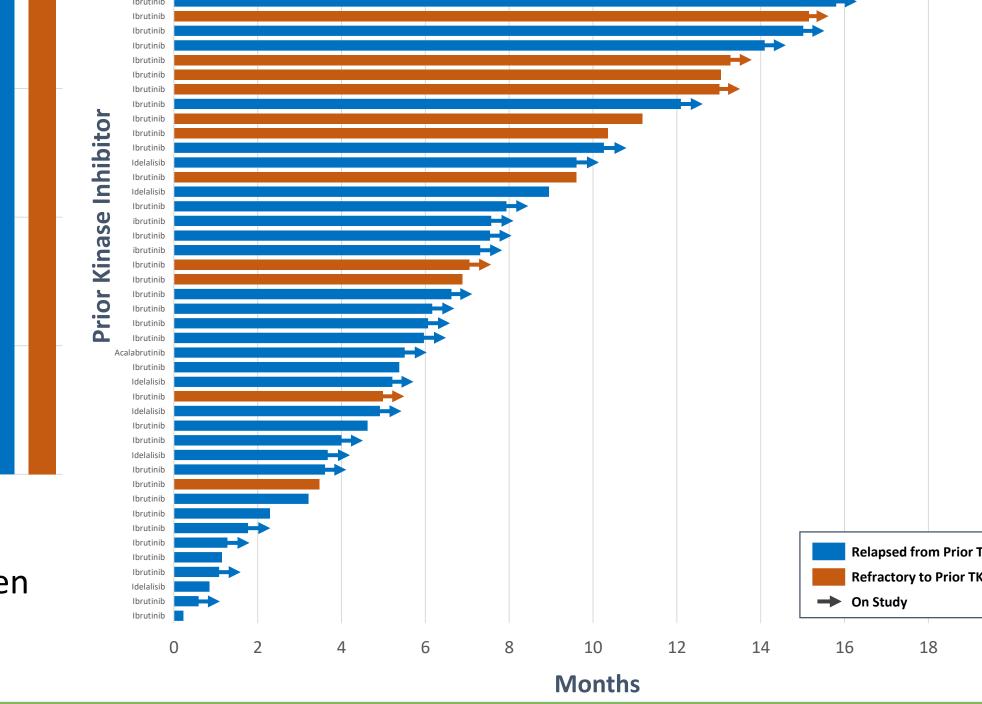
Adverse Event	All Grades (n)	% All Grades	Grade 3/4 (n)	% Grade 3/4
Nausea	20	43%		
Diarrhea	19	40%	3	6%
Thrombocytopenia	12	26%	4	9%
Insomnia	11	23%		
Fatigue	10	21%		
Dizziness	9	19%		
Neutropenia	9	19%	7	15%
Headache	8	17%		
Anemia	6	13%	1	2%
Contusion	6	13%		
Cough	6	13%		
Edema peripheral	6	13%		
Pyrexia	6	13%	1	2%
Arthralgia	5	11%		
Myalgia	5	11%		
Pain in extremity	5	11%		
Paresthesia	5	11%		
Productive Cough	5	11%		
Rash	5	11%		

- ❖ Of the 19 events of diarrhea, 10 were Grade 1, 6 were Grade 2, and 3 were Grade 3
- 3 (6%) pts had dose reductions (headache, neutropenia,
- ❖ 1 case of colitis reported after 6 weeks on treatment recovered after 2 week hold, and did not recur on rechallenge at 600 mg daily – patient achieved a Complete Response (17p del) now 16+ months on study
- ❖ 6 (13%) pts discontinued treatment due to an umbralisib AE (pneumonia (2), pancreatitis, pneumonitis, dermatitis, rash); 1 was a recurrent AE's that led to prior KI intolerance (rash)
- 2 additional pts had recurrence of an AE that led to intolerance on prior KI, however both recurrences were of lesser severity (diarrhea G1, nausea G1) and neither led to discontinuation / dose-modification of umbralisib * As of the cut-off date, 47% of pts have been on
- umbralisib for a longer duration than their prior KI

Swimmer Plot (Duration of Exposure)


Efficacy

Best % Change in Nodal Lesions


Relapsed from Prior TKI

Refractory to Prior TK

17p/TP53mut/11g and/or IGHV unmutated

* PFS: Median progression-free survival has not been reached with a median follow-up of 9.5 months.

Conclusions

- * Favorable safety profile: Umbralisib demonstrates a favorable safety profile in pts intolerant to prior BTK or PI3K therapy.
- * Well tolerated: Only 13% discontinuations due to an AE. Only 1 discontinuation due to a recurrent AE also experienced with prior KI therapy.
- * Significant clinical activity: In this R/R CLL population, of which 77% required treatment within 6 months of prior KI discontinuation, 68% had a high-risk molecular / genetic marker and 6% had an ibrutinib resistance mutation, significant clinical activity has been observed and median PFS has not been reached.