Phase I/II Study of Umbralisib (TGR-1202) in Combination with Ublituximab (TG-1101) and Pembrolizumab in Patients with Relapsed/Refractory CLL and Richter's Transformation

Anthony R. Mato, MD MSCE¹, Jakub Svoboda, MD², Eline T. Luning Prak, MD, PhD³, Stephen J. Schuster, MD², Patricia Tsao, MD, PhD³, Colleen Dorsey, BSN, RN¹, Pamela S. Becker, MD⁴, Danielle M. Brander, MD⁵, Sunita Dwivedy Nasta, MD², Daniel J. Landsburg, MD², Cara M King, MPH², Beth Morrigan⁴, Jill Elwell⁴, Kaitlin Kennard, RN, BSN², Lindsey E. Roeker, MD¹, Andrew D. Zelenetz, MD, PhD⁶, Michelle Purdom, PhD, RN⁷, Dana Paskalis⁷, Peter Sportelli⁷, Hari P Miskin, MSc⁷, Michael S. Weiss⁷ and Mazyar Shadman, MD, MPH⁴

¹CLL Program, Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, NY; ²Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; ³Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA; ⁴Fred Hutchinson Cancer Research Center, Seattle, WA; ⁵Duke Cancer Institute, Duke University Health System, Durham, NC; ⁶Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY; ⁷TG Therapeutics, Inc., New York, NY

> Presented at the 60th Annual ASH Meeting and Exposition December 1 − 4, 2018 ● San Diego, CA

Background / Rationale: PD-1/PD-L1 axis

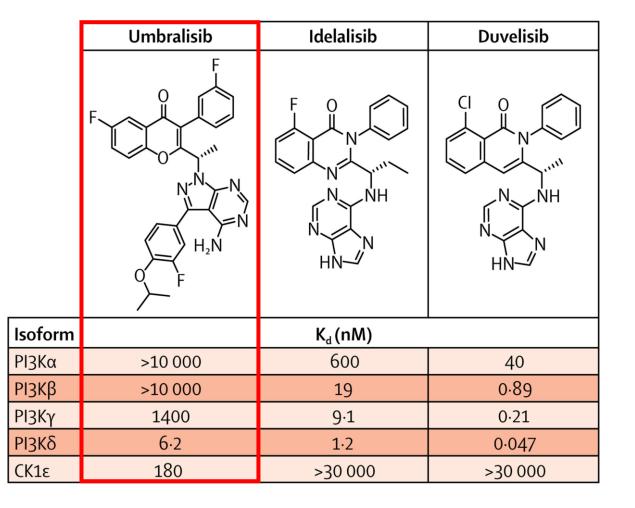
- Pre-clinical data supports a major role for the PD-1 and PD-L1/PD-L2 axis in mediating immune evasion in CLL:
 - **T-cells**: PD-1 expression is significantly higher in CLL patients with increased memory and terminally differentiated cells
 - CLL: Higher levels of PD-L1 / PD-L2 and can inhibit T-cell proliferation and induce T-regs
 - **Microenvironment**: Within lymph node proliferation centers, PD-1+ T-cells are in close contact with PD-L1+ CLL cells
 - **TCL-1 mouse model:** Anti-PD-L1 treatment prevents aberrant T-cell subset distributions, PD-1 expression, and restores T-cell effector functions
- **Disconnect between promising preclinical data and clinical data with anti-PD-1 monotherapy:**

	Study	Efficacy
Grzywnowicz et al., PLOS 2012 Brusa et al., Haem 2012 Palma et al., Haem 2017 Ringelstein-Harlev et al. Blood 2014 Ding et al., Blood 2017 Rogers et al., BIH 2018	CLL (Mayo), n=16	ORR 0%, PFS 2.4 months, OS 11.2 months
	RT (Mayo), n=9	ORR 44%, PFS 5.4 months, OS 10.7 months
	Real world data (OSU) n=10	90% failure rate in RT. OS 2 months

Background / Rationale: PI3K inhibition

 PI3Kδ inhibition is hypothesized to increase innate / adaptive cell-mediated immune responses

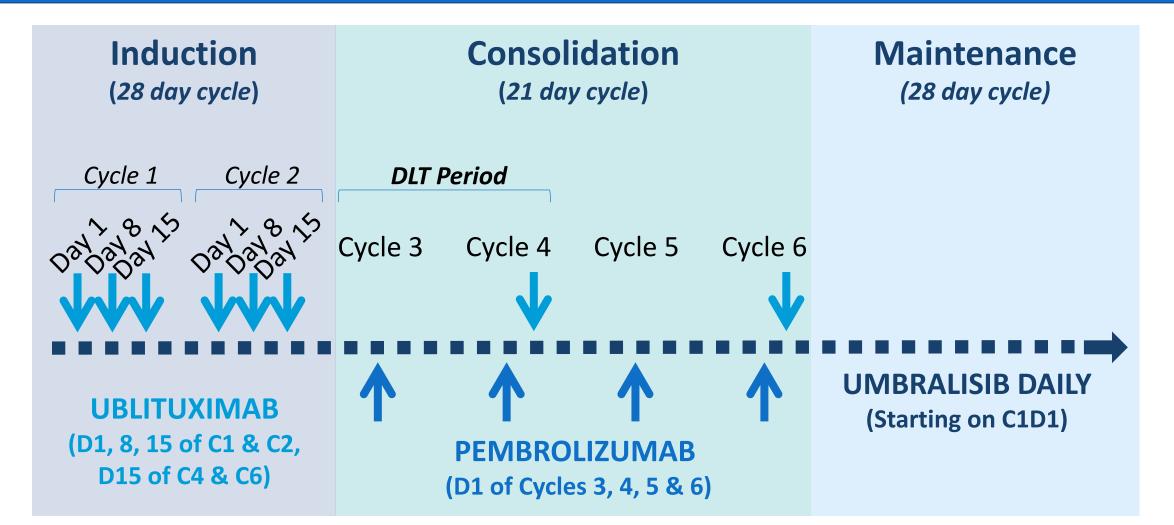
PI3Kδ inhibition + PD-1 blockade:


 A key interaction exists between PI3K signaling and immune checkpoint surveillance by which inhibition of PI3Kδ decreases PD-L1 tumor expression, suggesting potential synergistic activity between agents that block PD-L1/PD-1 and PI3Kδ

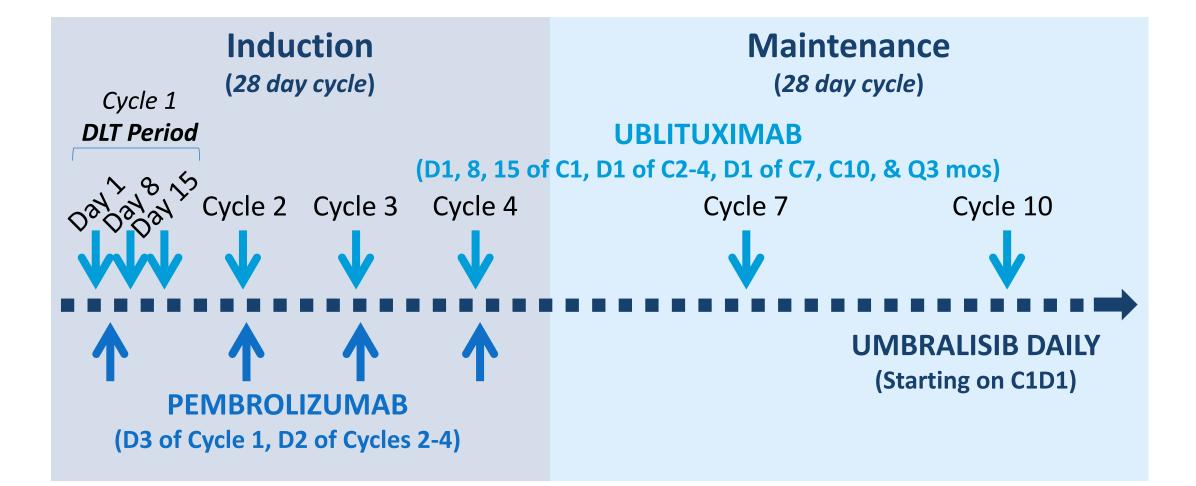
Striking a balance between dampening immune evasion and increasing immune mediated AEs:

- AEs observed with all PI3Kδ inhibitors may be caused by inhibition of T-regs and T-cell mediated immune effects
- Selection of a PI3Kδ inhibitor to pair with a PD-1 inhibitor should consider its clinical activity, immune mediated toxicity profile, and effect on T-cell subsets

Umbralisib + Ublituximab ("U2")


- Umbralisib: Next generation PI3Kδ inhibitor, with a unique structure and improved tolerability¹
 - Improved selectivity to $PI3K\delta$ isoform
 - Not metabolized through CYP3A4: limited medication interactions
 - Preclinical: Greater retention of T-reg suppressive capacity compared to idelalisib & duvelisib²
 - Clinical: Integrated analysis of long-term safety: demonstrates low rates of immune-mediated toxicity³
 - Oral once daily administration
 - Phase 3 dose: 800 mg QD
- Ublituximab: glycoengineered anti-CD20 monoclonal antibody
 - Enhanced ADCC compared to rituximab

Study Hypothesis & Rationale


- Umbralisib was selected due to preclinical data showing minimal effect on Tregs and clinical experience showing favorable toxicity profile with minimal (but not absent) autoimmune toxicities
- Study design: Phase I/II dose-escalation (3+3 design), multicenter study to assess the safety & efficacy of U2 + pembro in patients with R/R CLL and RT (NCT02535286)
 - Cohort 1: Pembo 100 mg
 - Cohort 2: Pembro 200 mg
- Correlative studies: Peripheral blood and/or bone marrow samples were collected at screening, month 2, and month 6
- First reported combination of a PD-1 inhibitor + PI3Kδ inhibitor in this population

Study Design: Treatment Schedule for CLL

 Efficacy assessed at the end of Cycles 2, 6 & 12. After Month 12, efficacy is assessed per investigator discretion.

Study Design: Treatment Schedule for RT

Efficacy assessed at the end of Cycles 2 & 4 and Q3 cycles thereafter until Month 12.
 After Month 12, efficacy assessed per investigator discretion.

Study Objectives and Key Eligibility

Primary Objective

• To determine the safety of U2 + pembro in CLL and RT patients

Secondary Objectives

- To evaluate efficacy (ORR, PFS) iwCLL (2008) & Cheson (2007)
- To describe the immunophenotypic profiles of B and T cells
- Key Eligibility
 - CLL: progressed on at least one prior therapy
 - Mid-study amendment required CLL pts to be BTK refractory (PD within 6 mos of prior BTK)
 - RT: chemo-immunotherapy refractory or not eligible for high-dose chemo
 - No limit on # of prior therapy treatment regimens
 - ANC > 750/μL, platelet count > 40,000/μL
 - Prior exposure to PD-1 or PI3K inhibitor was NOT an exclusion

Demographics

Chronic Lymphocytic Leukemia

Evaluable for Safety & Efficacy, n	10
Median Age, years (range)	70 (60 - 81)
Male/Female	6 / 4
ECOG, 0/1/2	4/6/0
Prior Therapy Regimens, median (range)	2 (1-4)
Prior BTK (ibrutinib or acalabrutinib), n (%)	6 (60%)
Refractory to prior BTK	5/6 (83%)
Refractory to immediate prior therapy, n (%)	7 (70%)
At least 1 high risk feature (del17p, del11q, TP53 <i>mut</i> , NOTCH1 <i>mut</i> or Complex karyotype)	8 (80%)
≥2 high risk features	6 (60%)
17p del/TP53 mutated, n (%)	3 (30%)
Complex Karyotype, n (%)	5 (50%)
NOTCH1/ATM/SF3B1 <i>mut,</i> n (%)	5 (50%)
IGHV Unmutated, n (%)	5 (50%)
Bulky Disease, n (%)	6 (60%)

Richter's Transformation

Evaluable for Safety, n	5
Evaluable for Efficacy ⁺ , n	4
Median Age, years (range)	70 (53 - 73)
Male/Female	4/1
ECOG, 0/1/2	3/1/1
Prior Therapy Regimens, median (range)	7 (2 – 9)
Prior ibrutinib	5 (100%)
Refractory to prior ibrutinib	5 (100%)
Prior idelalisib + rituximab	2 (40%)
Prior venetoclax	1 (20%)
Prior CAR-T / Allo Transplant	3 (60%)
Refractory to immediate prior therapy	5 (100%)
Bulky Disease, n (%)	5 (100%)

[†]1 RT patient is too early to evaluate.

Disposition and Safety

Enrollment by Cohort

Pembro Dose	CLL	RT	Total
100 mg	4	3	7
200 mg	6	2	8

- 1 DLT at 200 mg pembro dose (transient elevated LFT resolved); MTD not reached
- Grade 3/4 LFT elevations occurred in 3 patients (20%)
- No Grade 3/4 diarrhea and no events of colitis observed
- No Grade 3/4 pembro associated autoimmune events
- Median follow-up: 15.6+ mos

Dose Modifications

	Delay	Withdrawn
Pembro	3	1
Umbralisib	8	5

Adverse Events for (All Causality) >20% (N=15) Grade 3/4 All Grades % % Ν Ν **Neutropenia** 10 67% 5 33% 8 53% **Pyrexia** -**Decreased appetite** 7 47% -Diarrhea 47% 7 -Fatigue 7 47% 1 7% Infusion related reaction 7 47% Anemia 6 40% 1 7% **Blood alk phos increased** 6 40% -Chills 6 40% -Cough 6 40% -Nausea 6 40% 7% 1 Thrombocytopenia 6 40% 13% 2 Headache 5 33% -**Nasal congestion** 5 33% -**Peripheral Edema** 5 33% -

4

4

4

27%

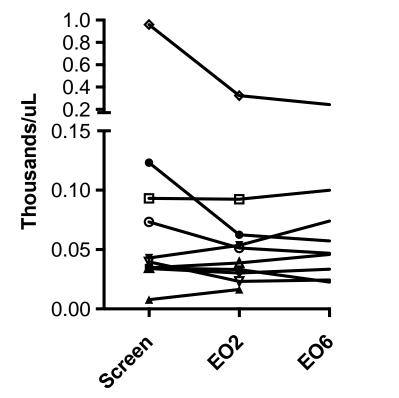
27%

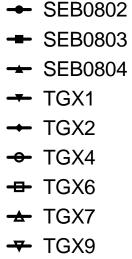
27%

Arthralgia

Dysgeusia

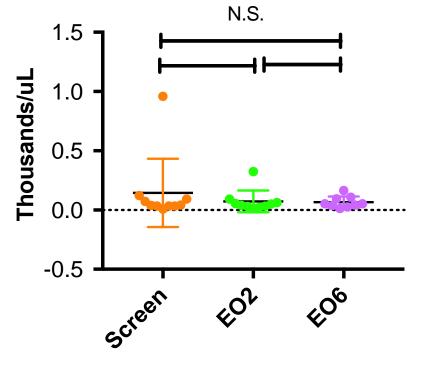
Myalgia

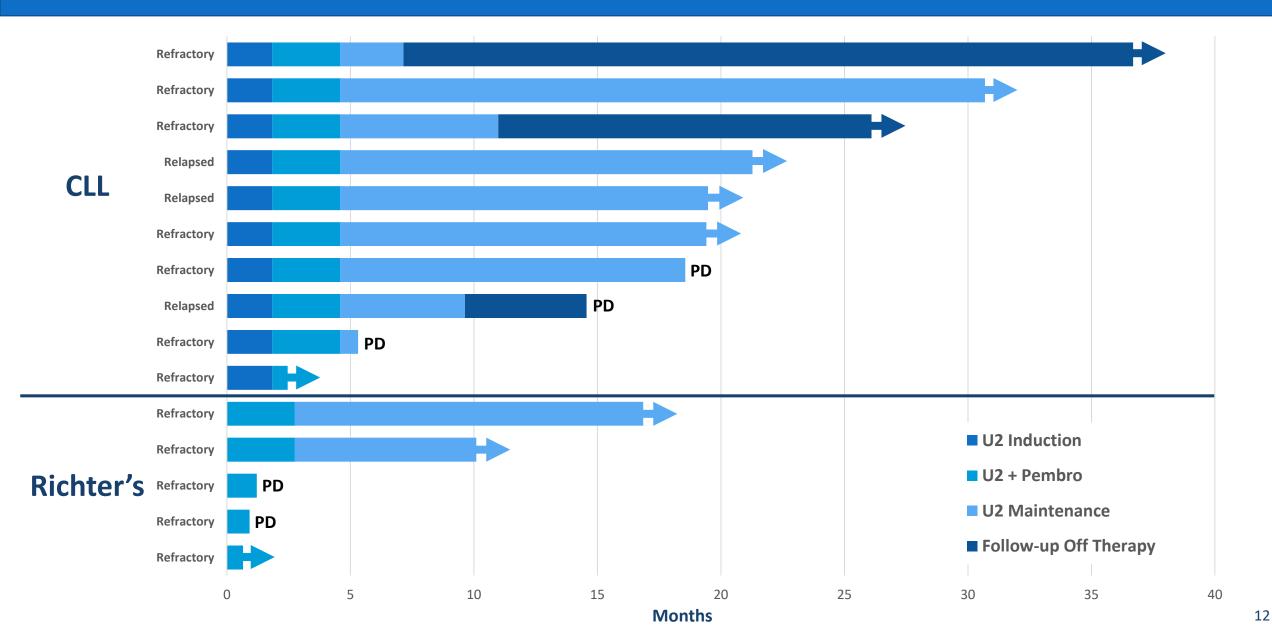

-


Correlatives: T-reg population

Circulating FoxP3+ CD4+ T cell levels do not change significantly in CLL study patients

FoxP3+ CD4 T cells vs. time

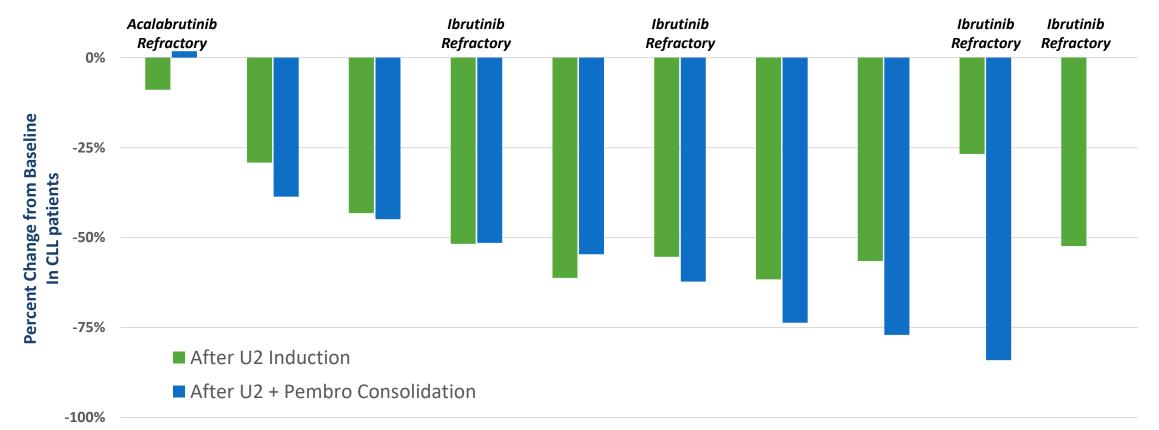

FoxP3 Column analysis (CD3+CD4+FoxP3+ Lymphs, PB)



TGX10

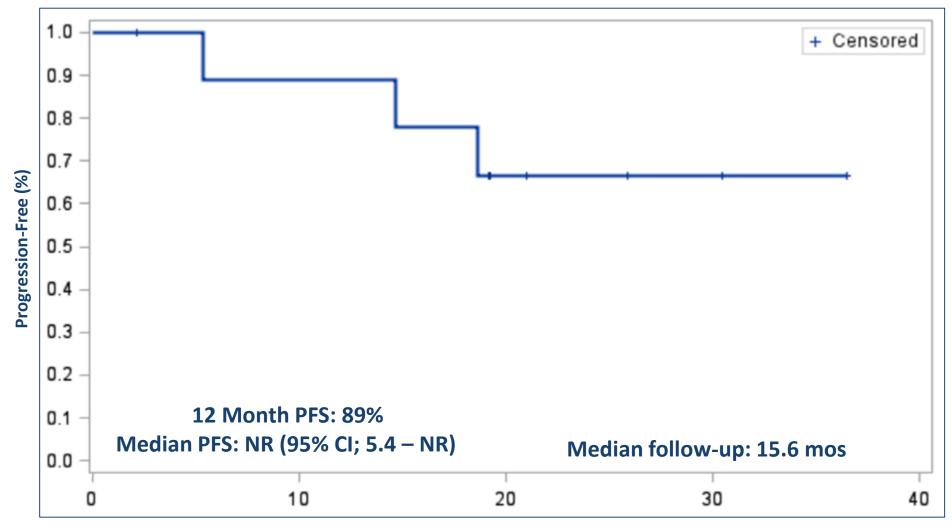
~

Efficacy & Tolerability: Duration of Exposure



Efficacy: ORR

Group	N	CR N (%)	PR N (%)	ORR N (%)
CLL	10	1 (10%)	8 (80%)	9 (90%)
RT	4	2 (50%)	0	2 (50%)


BTK Refractory CLL

- ORR: 80% (4/5)
- 3/4 BTK Refractory responders achieved response after U2 Induction, prior to pembro

Efficacy: PFS

Progression-Free Survival for CLL (N=10)

Time to Progression (months)

RT Patient 1: Case Study

- 73 yo Male
- Cytogenetics: 17p/11q del
- Prior Treatment History for CLL:
 - 2010: FCR
 - **2014**: BR
 - 2014: Ibrutinib
 - 2015: Idelalisib + rituximab
 - 2015: CD19 CAR-T
 - 2017: Ibrutinib again for 4 mos... progressed with Richter's
- Prior Treatment for RT:
 - Oct 2017: CD19 CAR-T → ibrutinib
 - Not eligible for HD chemotherapy

Started U2 + Pembro

Cohort 1 - 100 mg

- End of Cycle 2: 76% ↓ PR
- End of Cycle 5: Complete Response
 - **PET-negative** by Lugano Criteria (Cheson 2014)
- Tolerated U2 + Pembro well
 - 1 G3/4 AE: neutropenia
 - Umbralisib held for 4 days, G-CSF initiated and recovered. Resumed full dose umbralisib

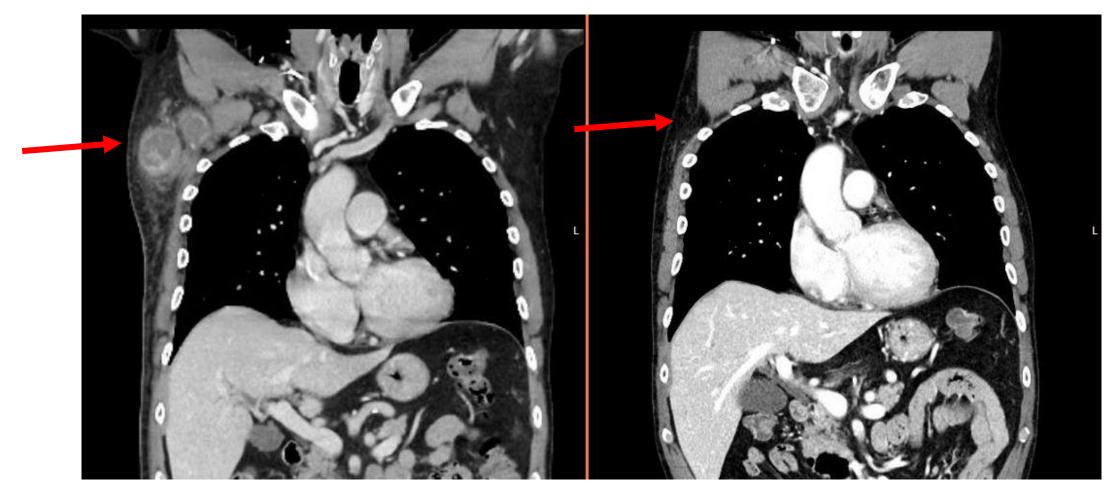
Subject remains on study in CR 10+ months

RT Patient 2: Case Study

- 62 yo Male
- Prior Treatment History for CLL:
 - 2008: PCR
 - **2011**: BR
 - 2013: FCR
 - **2013**: Ofatumumab + Fludara + Cyclophosphamide
 - 2014: Alemtuzumab
 - 2014: Allo Transplant
- Prior Treatment for RT:
 - Nov 2014: R-CHOP + Ibrutinib
 - PD while on Ibrutinib in 2017

Started U2 + Pembro

Cohort 1 - 100 mg


- **End of Cycle 2**: 76%↓ PR
- **End of Cycle 5**: 78%↓ PR
- End of Cycle 8: Complete Response
 PET-negative by Lugano Criteria (Cheson 2014)
- Tolerated U2 + Pembro well
 - 1 G3 event of Hypophosphatemia (possible related)
 - 1 G3 event of Hyperglycemia (not related)
 - No umbralisib dose modifications required

Subject remains on study in CR

RT Patient 2: Case Study CR (cont'd)

Baseline CT

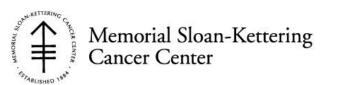
End of Cycle 8 CT

Subject remains in Complete Response now 16+ mos on trial

Conclusions

- Triplet combination of umbralisib + ublituximab ("U2") + pembrolizumab was well tolerated
 - Immune mediated toxicities were not increased above what would be expected with either umbralisib or pembrolizumab alone
- Responses were durable in BTK refractory, high-risk pts, including two durable CRs in RT pts
 - Data suggest that CLL pts who achieve less than CR with a checkpoint inhibitorcontaining regimen can achieve durable remissions and that time-limited schedules should be explored
- Maintenance of T-regs throughout therapy may explain limited autoimmune sequelae
- Enrollment is ongoing in both the CLL (BTK refractory only) and RT cohorts
 - Protocol amendment underway to replace pembro with novel anti-PD-L1 (TG-1501)

Acknowledgements


Thank you to the patients and their families for their participation

Participating Centers:

Referring Center:

