Long-term follow-up of the Pl3Kδ inhibitor TGR-1202 demonstrates a differentiated safety profile and high response rates in CLL and NHL: Integrated-analysis of TGR-1202 monotherapy and combined with ublituximab

Efficacy

Howard A. Burris III, MD^{1,2}, Ian W. Flinn, MD, PhD^{1,2}, Matthew Lunning, DO³, Julie Vose, MD⁵, Marshall T. Schreeder, MD⁶, Manish R. Patel, MD^{2,7}, Timothy S. Fenske, MD⁸, Danielle M. Brander, MD⁹, Tanya Siddiqi, MD¹⁰, Christopher Flowers, MD¹¹, Jan A. Burger, MD⁴, William G. Wierda, MD¹², Peter Sportelli¹³, Hari P. Miskin, MS¹³, Michael S. Weiss¹³ and Owen A. O'Connor, MD, PhD¹⁴

¹Tennessee Oncology, PLLC, Nashville, TN; ²Sarah Cannon Research Institute, Nashville, TN; ³University of Nebraska Medical Center, Omaha, NE; ⁴MD Anderson Cancer Center, Houston, TX; ⁵University of Nebraska Medical Center, Omaha, NE; ⁴MD Anderson Cancer Center, Houston, TX; ⁵University of Nebraska Medical College of Wisconsin, Milwaukee, WI; ⁹Duke University Medical Center, Durham, NC; ¹⁰City of Hope National Medical Center, Duarte, CA; ¹¹Emory University Medical Center, Duarte, CA; ¹¹Emory University Medical Center, New York, NY; ¹⁴Columbia University Medical Center, New York, NY; ¹⁴Columbia University Medical Center, New York, NY; ¹⁴Columbia University Medical Center, New York, NY; ¹⁶Columbia University Medical Center, New York, NY; ¹⁸Columbia University Medical Center, New York, NY; ¹⁹Columbia University Medical Center, NY; ¹⁹C

Background

Study Design

TGR-1202

- * PI3Kδ is highly expressed in cells of hematopoietic origin and is often upregulated in lymphoid malignancies
- * TGR-1202 (TGR) is a next generation PI3Kδ inhibitor, with a unique structure and activity profile distinct from other PI3Kδ inhibitors in development, including:
 - A prolonged half-life that enables once-daily dosing
 - A differentiated safety profile from other PI3Kδ inhibitors in development

Fold-selectivity					
Isoform	ΡΙ3Κα	РІЗКβ	РІЗКγ	ΡΙ3Κδ	
TGR-1202	>1000	>50	>48	1	
¹ Idelalisib	>300	>200	>40	1	
² IPI-145	>640	>34	>11	1	

TGR-1202-101: TGR-1202 Monotherapy

Study TGR-1202-101 (NCT01767766) is a first-in-

human, Phase I study of TGR-1202 in patients with

* TGR-1202 dosed orally once-daily (QD) in

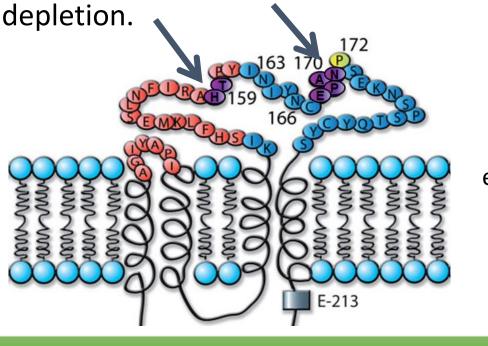
Dose-limiting toxicities (DLTs) assessed in Cycle

Intra-patient dose escalation allowed for

establishment of safety at higher doses

patients in previous cohorts following

UTX-TGR-103: TGR-1202 in Combination with Ublituximab


relapsed or refractory hematologic malignancies

continuous 28 Day Cycles

1 prior to escalation

Ublituximab

- ❖ Ublituximab (TG-1101, UTX) is a novel, chimeric monoclonal antibody targeting a unique epitope on the CD20 antigen, and glycoengineered to enhance affinity for all variants of FcyRIIIa receptors, thereby demonstrating greater antibody-dependent cellular cytotoxicity (ADCC) activity than rituximab and ofatumumab.
- Phase I trials of single agent ublituximab in patients with relapsed/refractory CLL and NHL reported impressive response rates with rapid and sustained lymphocyte

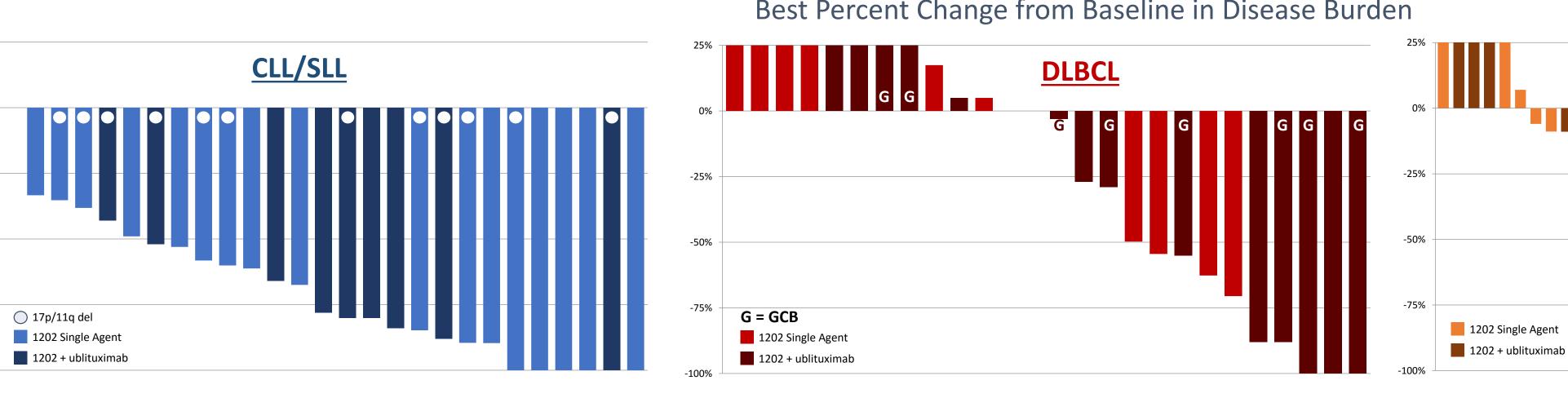
Red: Amino acids contributing to fatumumab binding v: Amino acids ssential for rituximab, but not ofatumumab binding Purple: Core amino acids of ublituximab epitope

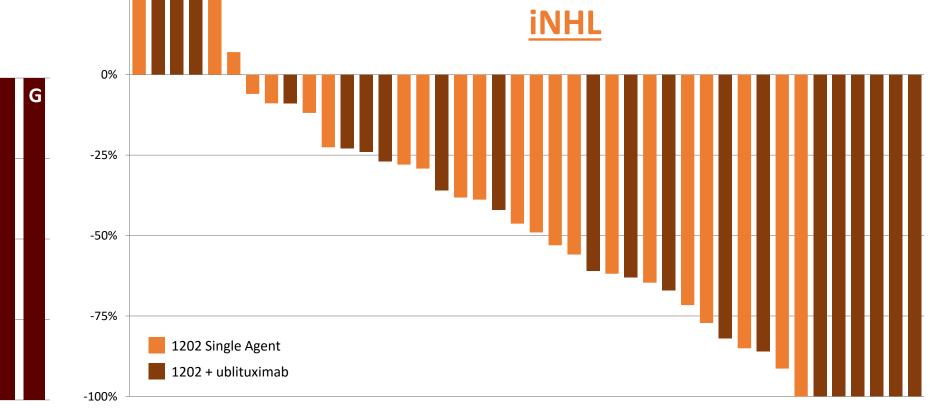
Demographics

Results

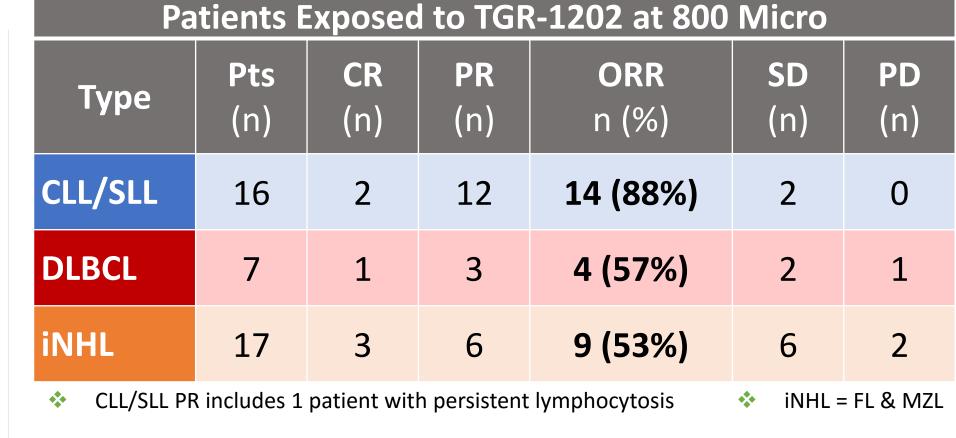
Evaluable for Safety (n) (90 Single Agent, 75 Combo with UTX Median Age, years (range) 65 (22 - 86) Male/Female 106/59 DLBCL MZL MCL T-Cell HCL

0 0		Richter's
E	Median ECOG	1
	Prior Therapies, median (range)	3 (0 - 14)
	Patients with ≥ 3 Prior Therapies (%)	94 (57%)
	Patients Refractory to Prior Therapy (%)	85 (52%)


Safety


All Causality AE's Occurring in ≥ 10% of Patients (n = 165)

-				_
A diverse French	All Grades		Grade 3/4	
Adverse Event	N	%	N	%
Diarrhea	78	47%	5	3%
Nausea	74	45%	2	1%
Fatigue	61	37 %	5	3%
Vomiting	44	27%	0	0%
Neutropenia	34	21%	30	18%
Cough	32	19%	0	0%
Dyspnea	30	18%	6	4%
Dizziness	29	18%	0	0%
Headache	28	17 %	2	1%
Pyrexia	26	16%	2	1%
Decreased appetite	26	16%	0	0%
Rash	26	16%	6	4%
Sinusitis	25	15%	2	1%
Anemia	24	15%	9	5%
Constipation	24	15%	1	1%
Insomnia	23	14%	0	0%
Hypokalemia	22	13%	5	3%
Back pain	20	12%	1	1%
Abdominal pain	18	11%	4	2%
Upper respiratory infection	18	11%	0	0%


- <8% of patients discontinued due to a TGR-1202 related AE ♦ 13% of patients had a TGR-1202 dose reduction
- Grade 3/4 AST/ALT increase was 3% (8% all grades), predominantly observed above the Phase 3 dose
- Grade 3/4 pneumonia occurred in 5% of patients (8% all grades)
- Two events of pneumonitis (<1.5%) were reported
- Two cases of colitis (<1.5%) have been reported at doses exceeding the Phase 3 dose and did not appear to be time dependent (1000 mg and 1200 mg, at 4 mos. and 24 mos., respectively, after initiating therapy).

Patients Treated at "Higher Doses" of TGR-1202 Best Percent Change from Baseline in Disease Burden

Duration on Study (n=165)

Overall Response Rate At Phase 3 Dose

Ibrutinib Refractory Patients treated with TGR + UTX

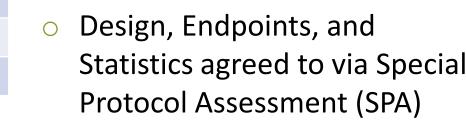
	Cyto- genetics	# of Prior Lines	Prior Theranies	% SPD reduction	ORR	Status
	11q	4	 R-Benda Ofatumumab Ibrutinib 	-100%	PR	On Study
76	17p	2	 R-Fludarabine Ibrutinib 	-37%	SD	Off (PD)
	17p, p53	2	 Ibrutinib Bendamustine & CAR T-cell 	-55%	PD	Off (PD)
	No del	5	 FCR R-Benda FCR Ibrutinib 	+25%	PD	Off (PD)

All patients were treated with 800 mg of TGR-1202 in combination with ublituximab

- Higher Doses: 1200 mg formulation, or ≥600 mg of the micronized formulation
- ORR in iNHL for patients treated at Higher Doses was not only greater with the combo (55%) as opposed to monotherapy (41%), but the depth of response was significantly greater with the addition of UTX (CR rate of 5% for monotherapy vs. 30% for the combo)
- Similarly, 3 complete responses observed in patients with DLBCL treated at Higher Doses occurred in patients receiving TGR + UTX
- An exploratory subset of patients with ibrutinib refractory CLL were treated with TGR + UTX and analyzed separately due to the aggressive nature of their disease
- A strong dose response was observed, with patients exposed to 800 mg of the micronized formulation achieving higher rates of response

UNITY Registration Program

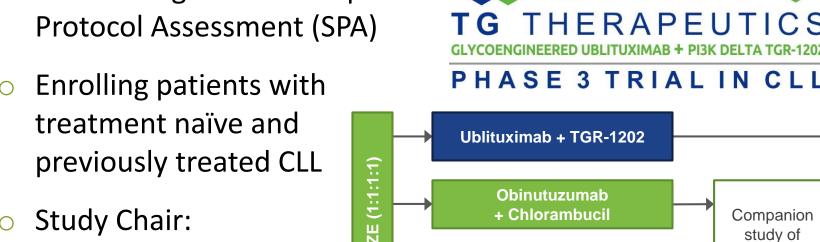
Longest patients on daily TGR-1202 for 3+ years


Extended durations of exposure

80 patients for 6+ cycles

43 patients for 12+ cycles

14 patients for 24+ cycles

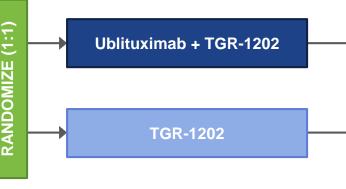

Phase 3 UNITY-CLL Study

John Gribben, MD, PhD

Clinical trials.gov #:

NCT02612311

Companio study of **Ublituximab TGR-1202** Available on


progression

DLBCL Enrolling patients with previously treated DLBCL

Ex-US Study Chair: Pier-Luigi Zinzani, MD, PhD

Phase 2b UNITY-DLBCL Study

TGR-1202 is well tolerated and highly active in a broad population of heavily

Conclusions

- pretreated & high-risk patients with NHL & CLL, with the addition of ublituximab to TGR-1202 exhibiting greater frequency and depth of response over TGR-1202 Discontinuations due to adverse events have been limited (~8%); GR3/4 events
- most associated with PI3K delta inhibitors have been rare, including pneumonia (~5%) and pneumonitis (<1.5%), ALT/AST elevations (~3%) and colitis (<1.5%), the latter occurring with no apparent association to time on therapy
- Safety profile supports additional multi-drug regimens: triple therapy combinations adding novel agents to ublituximab and TGR-1202 are ongoing (including ibrutinib, bendamustine, and pembrolizumab) with additional triple therapy studies planned
- Marked activity observed in CLL and DLBCL being explored further in registration directed UNITY-CLL Phase 3 Study and UNITY-DLBCL Study, with UNITY-iNHL study to commence by YE 2016

Study UTX-TGR-103 (NCT02006485) is a Ph I/Ib

Cycle 1

trial evaluating the combination of ublituximab + TGR-1202 in patients with relapsed or refractory NHL and CLL. The study is divided into two parts:

- **❖ Phase I:** 3+3 escalation evaluating Cycle 1 DLTs
- Phase Ib: Dose Expansion

Efficacy is assessed Week 8, and every 12 weeks thereafter. After Month 12, all patients remain on TGR-1202 single administered on Days 1, 8 and 15 of Cycles 1 & 2 and Day 1 of Cycles 4, 6, 9 & 12. The protocol was amended to use a

Treatment Schedule:

Ublituximab was initially more convenient schedule as follows:

3+3 Dose Escalation


Micronized TGR-1202

Dose Escalation Schema:

Schema:

Dose Escalation Schema:				
Cohort	UTX Dose	TGR Dose (QD)		
1	900/600 mg NHL/CLL	800 mg		
2	900/600 mg NHL/CLL	1200 mg		
3	900 mg	400 mg (micronized)		
4	900 mg	600 mg (micronized)		
5	900 mg	800 mg (micronized)		
6	900 mg	1000 mg (micronized)		
7	900 mg	1200 mg (micronized)		
Expansion	TGR-1202 at 800 mg, 100	00 mg, and 1200 mg micronize		

UBLITUXIMAB INFUSIONS

TGR-1202 DAILY

Presented at the 2016 American Society of Clinical Oncology (ASCO) Conference, June 3 – 7, 2016