The PI3K-δ Inhibitor TGR-1202 In Combination With Brentuximab Vedotin (SGN-35) Synergistically Induces G2/M Phase Arrest and Cell Death Via Inhibition Of Tubulin Polymerization In Hodgkin Lymphoma Cell Lines

Silvia L Locatelli,1,2 Silvia Tartari,1 Luca Castagna,1 Luca Rubino,1 Srikanth Viswanadha,3 Swaroop Vakkalanka,4 Peter Sportelli,3 Armando Santoro,1 and Carmelo Carlo-Stella,1,2

1 Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Rozzano, Italy; 2 Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy; 3 Incogen Therapeutics, Hyderabad, India; 4 Rhizen Pharmaceuticals, La Chaux-de-Fonds, Switzerland; 5 TG Therapeutics, Inc., New York, NY

BACKGROUND

- The phosphatidylinositol 3-kinase (PI3K) pathway is consistently activated in relapsed/refractory Hodgkin lymphoma (HL), suggesting that TGR-1202, a novel inhibitor of the delta isoform of PI3K (PI3K-δ), in clinical development for patients with hematologic malignancies, might represent an attractive therapeutic option.
- The anti-CD30 monoclonal antibody Brentuximab Vedotin (BV) conjugated to the microtubule-disrupting agent monomethyl auristatin E (MMAE) has recently been reported to induce an overall response rate of 75% in relapsed/refractory HL but is associated with limited response duration.
- Combination therapies aimed at enhancing the anti-tumor activity of BV and avoiding potential toxicity may have significant clinical impact in the treatment of relapsed/refractory HL.
- The present study was aimed at investigating the activity and mechanism(s) of action of the PI3K-δ inhibitor TGR-1202, in combination with BV in non-clinical models of HL.

AIM OF THE STUDY

To investigate in vitro the activity and mechanism(s) of action of TGR-1202 in combination with BV by using three HL cell lines (L-540, KM-H2, L-428).

METHODS & RESULTS

IN VITRO

- TGR-1202 and BV used as single agents induced time- and dose-dependent inhibition of cell proliferation and induction of cell death in HL cells (Fig. 1A-C).
- TGR-1202 in combination with BV was associated with:
 - synergistic inhibition of the mean (±SEM) growth of L-540, KM-H2, and L-428 cell lines (TGR-1202: 40 ± 4%; BV: 30 ± 2%; TGR-1202/BV: 85 ± 1%) (Fig. 2A).
 - 3-fold induction of cell death (TGR-1202: 27 ± 2%; BV: 27 ± 2%; TGR-1202/BV: 75 ± 2%) in L-540, KM-H2, and L-428 cell lines (Fig. 2B).
 - G2/M cell cycle arrest and 3-fold reduction of cells in S phase (TGR-1202: 25 ± 1%; BV: 23 ± 1%; TGR-1202/BV: 9 ± 1%, mean ± SEM) (Fig. 3A).
 - marked Cyclin B1 and p21 overexpression (Fig. 3B).
- TGR-1202 alone induced a marked time-dependent inhibition of PI3K/Akt pathway (Fig. 4A) and dephosphorylation of GSK-3, Aurora kinases, and stathmin (Fig. 4B).
- TGR-1202/BV treatment resulted in a potent synergistic microtubule disruption (mean values of α-tubulin inhibition of 40%, P ≤ 0.001) (Fig. 5).

IN Vivo

TGR-1202/BV combination induced significant reduction of tumor volumes as compared to TGR-1202 alone (by 56%) (Fig. 6-7), without any toxicity (Fig. 8).

CONCLUSIONS

- In all HL cell lines, TGR-1202/BV treatment induced potent anti-tumor effects.
- Novel PI3K-δ inhibitor TGR-1202 enhances the anti-tumor activity of BV.
- In vivo – increase drug-induced apoptosis and tubulin disruption.
- In vivo – inhibition of tumor volumes.
- Our data provides a strong rationale for evaluating TGR-1202 in combination with BV in patients with relapsed/refractory HL.

REFERENCES

DISCLOSURES