Constitutively activated PI3K/AKT/mTOR pathway plays a critical role in the proliferation and survival of cancer cells. Through the expression of numerous pro-survival and proliferative genes. Specific inhibitors of the various isoforms of PI3K have shown promising activity in the treatment of indolent B-cell lymphoma. However, they have not shown similar activity in aggressive lymphoma. Notable examples of such signals regulated by mTOR include the expression of the pro-survival and pro-proliferative genes, NF-kappaB (NF-κB) pathway, and the eukaryotic initiation factor 4E (eIF4E). Through a feed-forward loop, eIF4E controls the expression of c-Myc, a well established oncoprotein in many cancers including highly aggressive lymphomas.

Hypothesis

If both the proteasome and PI3K are involved in activation of mTOR, then combinations of proteasome and PI3K inhibitors will be able to potently inhibit the mTOR-eIF4F-Myc axis and kill Myc dependent cancer.

Future Direction

- Determine whether down-regulation of c-Myc is caused by disruption of the feed-forward loop of eIF4F-Myc in lymphoma
- Investigate other mechanisms of the synergy
- Determine the in vivo effects of combining carfilzomib and TGR-1202
- A clinical trial combining carfilzomib and TGR-1202 will be open for enrollment soon.