Phase I/II Study of Umbralisib (TGR-1202) in Combination with Ublituximab (TG-1101) and Pembrolizumab in Patients with Relapsed/Refractory CLL and Richter’s Transformation

Anthony R. Mato, MD MSCE, Jakub Svoboda, MD, Eline T. Luning Prak, MD, PhD, Stephen J. Schuster, MD, Patricia Tsao, MD, PhD, Colleen Dorsey, BSN, RN, Pamela S. Becker, MD, Danielle M. Brander, MD, Sunita Dwivedy Nasta, MD, Daniel J. Landsburg, MD, Cara M King, MPH, Beth Morrigan, Jill Elwell, Kaitlin Kennard, RN, BSN, Lindsey E. Roeker, MD, Andrew D. Zelenetz, MD, PhD, Michelle Purdom, PhD, RN, Dana Paskalis, Peter Sportelli, Hari P Miskin, MSc, Michael S. Weiss, Mazyar Shadman, MD, MPH

1CLL Program, Leukemia Service, Memorial Sloan-Kettering Cancer Center, New York, NY; 2Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA; 3Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA; 4Fred Hutchinson Cancer Research Center, Seattle, WA; 5Duke Cancer Institute, Duke University Health System, Durham, NC; 6Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY; 7TG Therapeutics, Inc., New York, NY

Presented at the 60th Annual ASH Meeting and Exposition
December 1 – 4, 2018 ● San Diego, CA
Background / Rationale: PD-1/PD-L1 axis

- **Pre-clinical data supports a major role for the PD-1 and PD-L1/PD-L2 axis in mediating immune evasion in CLL:**
 - **T-cells:** PD-1 expression is significantly higher in CLL patients with increased memory and terminally differentiated cells
 - **CLL:** Higher levels of PD-L1 / PD-L2 and can inhibit T-cell proliferation and induce T-regs
 - **Microenvironment:** Within lymph node proliferation centers, PD-1+ T-cells are in close contact with PD-L1+ CLL cells
 - **TCL-1 mouse model:** Anti-PD-L1 treatment prevents aberrant T-cell subset distributions, PD-1 expression, and restores T-cell effector functions

- **Disconnect between promising preclinical data and clinical data with anti-PD-1 monotherapy:**

<table>
<thead>
<tr>
<th>Study</th>
<th>Efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLL (Mayo), n=16</td>
<td>ORR 0%, PFS 2.4 months, OS 11.2 months</td>
</tr>
<tr>
<td>RT (Mayo), n=9</td>
<td>ORR 44%, PFS 5.4 months, OS 10.7 months</td>
</tr>
<tr>
<td>Real world data (OSU) n=10</td>
<td>90% failure rate in RT, OS 2 months</td>
</tr>
</tbody>
</table>

Grzywnowicz et al., PLOS 2012
Brusa et al., Haem 2012
Palma et al., Haem 2017
Ding et al., Blood 2017
Rogers et al., BJH 2018
Background / Rationale: PI3K inhibition

- **PI3Kδ inhibition is hypothesized to increase innate / adaptive cell-mediated immune responses**

- **PI3Kδ inhibition + PD-1 blockade:**
 - A key interaction exists between PI3K signaling and immune checkpoint surveillance by which **inhibition of PI3Kδ decreases PD-L1 tumor expression**, suggesting potential synergistic activity between agents that block PD-L1/PD-1 and PI3Kδ

- **Striking a balance between dampening immune evasion and increasing immune mediated AEs:**
 - AEs observed with all PI3Kδ inhibitors may be caused by inhibition of T-regs and T-cell mediated immune effects
 - Selection of a PI3Kδ inhibitor to pair with a PD-1 inhibitor should consider its clinical activity, immune mediated toxicity profile, and effect on T-cell subsets
Umbralisib + Ublituximab ("U2")

- **Umbralisib**: Next generation PI3Kδ inhibitor, with a unique structure and improved tolerability¹
 - Improved selectivity to PI3Kδ isoform
 - Not metabolized through CYP3A4: limited medication interactions
 - **Preclinical**: Greater retention of T-reg suppressive capacity compared to idelalisib & duvelisib²
 - **Clinical**: Integrated analysis of long-term safety: demonstrates low rates of immune-mediated toxicity³
 - Oral – once daily administration
 - Phase 3 dose: 800 mg QD

- **Ublituximab**: glycoengineered anti-CD20 monoclonal antibody
 - Enhanced ADCC compared to rituximab

¹Burris et al., Lancet Oncology 2018; ²Maharaj et al., AACR 2016; ³Davids et al., EHA 2018
Umbralisib was selected due to **preclinical data** showing minimal effect on T-regs and **clinical experience** showing favorable toxicity profile with minimal (but not absent) autoimmune toxicities

Study design: Phase I/II dose-escalation (3+3 design), multicenter study to assess the safety & efficacy of U2 + pembro in patients with R/R CLL and RT (NCT02535286)

- **Cohort 1:** Pembro 100 mg
- **Cohort 2:** Pembro 200 mg

Correlative studies: Peripheral blood and/or bone marrow samples were collected at screening, month 2, and month 6

First reported combination of a PD-1 inhibitor + PI3Kδ inhibitor in this population
Study Design: Treatment Schedule for CLL

- **Induction** (28 day cycle)
 - Cycle 1: Day 1, Day 8, Day 15
 - Cycle 2: Day 1, Day 8, Day 15

- **Consolidation** (21 day cycle)
 - DLT Period
 - Cycle 3
 - Cycle 4
 - Cycle 5
 - Cycle 6

- **Maintenance** (28 day cycle)
 - UMBRALISIB DAILY
 - Starting on C1D1

- Efficacy assessed at the end of Cycles 2, 6 & 12. After Month 12, efficacy is assessed per investigator discretion.
Study Design: Treatment Schedule for RT

- Induction (28 day cycle)
 - Cycle 1
 - DLT Period
 - Day 1, Day 8, Day 15
 - Cycle 2
 - Cycle 3
 - Cycle 4
 - UMBRALISIB DAILY (Starting on C1D1)
 - UBLITUXIMAB
 - (D1, 8, 15 of C1, D1 of C2-4, D1 of C7, C10, & Q3 mos)

- Maintenance (28 day cycle)
 - Cycle 7
 - Cycle 10
 - UMBRALISIB DAILY
 - (Starting on C1D1)

- Efficacy assessed at the end of Cycles 2 & 4 and Q3 cycles thereafter until Month 12. After Month 12, efficacy assessed per investigator discretion.
Study Objectives and Key Eligibility

- **Primary Objective**
 - To determine the safety of U2 + pembro in CLL and RT patients

- **Secondary Objectives**
 - To describe the immunophenotypic profiles of B and T cells

- **Key Eligibility**
 - CLL: progressed on at least one prior therapy
 - Mid-study amendment required CLL pts to be BTK refractory (PD within 6 mos of prior BTK)
 - RT: chemo-immunotherapy refractory or not eligible for high-dose chemo
 - No limit on # of prior therapy treatment regimens
 - ANC > 750/μL, platelet count > 40,000/μL
 - Prior exposure to PD-1 or PI3K inhibitor was NOT an exclusion
Demographics

Chronic Lymphocytic Leukemia

<table>
<thead>
<tr>
<th>Evaluable for Safety & Efficacy, n</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Age, years (range)</td>
<td>70 (60 - 81)</td>
</tr>
<tr>
<td>Male/Female</td>
<td>6 / 4</td>
</tr>
<tr>
<td>ECOG, 0/1/2</td>
<td>4 / 6 / 0</td>
</tr>
<tr>
<td>Prior Therapy Regimens, median (range)</td>
<td>2 (1 – 4)</td>
</tr>
<tr>
<td>Prior BTK (ibrutinib or acalabrutinib), n (%)</td>
<td>6 (60%)</td>
</tr>
<tr>
<td>Refractory to prior BTK</td>
<td>5/6 (83%)</td>
</tr>
<tr>
<td>Refractory to immediate prior therapy, n (%)</td>
<td>7 (70%)</td>
</tr>
<tr>
<td>At least 1 high risk feature (del17p, del11q, TP53mut, NOTCH1mut or Complex karyotype)</td>
<td>8 (80%)</td>
</tr>
<tr>
<td>≥2 high risk features</td>
<td>6 (60%)</td>
</tr>
<tr>
<td>17p del/TP53 mutated, n (%)</td>
<td>3 (30%)</td>
</tr>
<tr>
<td>Complex Karyotype, n (%)</td>
<td>5 (50%)</td>
</tr>
<tr>
<td>NOTCH1/ATM/SF3B1mut, n (%)</td>
<td>5 (50%)</td>
</tr>
<tr>
<td>IGHV Unmutated, n (%)</td>
<td>5 (50%)</td>
</tr>
<tr>
<td>Bulky Disease, n (%)</td>
<td>6 (60%)</td>
</tr>
</tbody>
</table>

Richter’s Transformation

<table>
<thead>
<tr>
<th>Evaluable for Safety, n</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluable for Efficacy†, n</td>
<td>4</td>
</tr>
<tr>
<td>Median Age, years (range)</td>
<td>70 (53 - 73)</td>
</tr>
<tr>
<td>Male/Female</td>
<td>4 / 1</td>
</tr>
<tr>
<td>ECOG, 0/1/2</td>
<td>3 / 1 / 1</td>
</tr>
<tr>
<td>Prior Therapy Regimens, median (range)</td>
<td>7 (2 – 9)</td>
</tr>
<tr>
<td>Prior ibrutinib</td>
<td>5 (100%)</td>
</tr>
<tr>
<td>Refractory to prior ibrutinib</td>
<td>5 (100%)</td>
</tr>
<tr>
<td>Prior idelalisib + rituximab</td>
<td>2 (40%)</td>
</tr>
<tr>
<td>Prior venetoclax</td>
<td>1 (20%)</td>
</tr>
<tr>
<td>Prior CAR-T / Allo Transplant</td>
<td>3 (60%)</td>
</tr>
<tr>
<td>Refractory to immediate prior therapy</td>
<td>5 (100%)</td>
</tr>
<tr>
<td>Bulky Disease, n (%)</td>
<td>5 (100%)</td>
</tr>
</tbody>
</table>

†1 RT patient is too early to evaluate.
Disposition and Safety

- 1 DLT at 200 mg pembro dose (transient elevated LFT - resolved); MTD not reached
- Grade 3/4 LFT elevations occurred in 3 patients (20%)
- No Grade 3/4 diarrhea and no events of colitis observed
- No Grade 3/4 pembro associated autoimmune events
- Median follow-up: 15.6+ mos

Enrollment by Cohort

<table>
<thead>
<tr>
<th>Pembro Dose</th>
<th>CLL</th>
<th>RT</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mg</td>
<td>4</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>200 mg</td>
<td>6</td>
<td>2</td>
<td>8</td>
</tr>
</tbody>
</table>

Adverse Events for (All Causality) >20% (N=15)

<table>
<thead>
<tr>
<th></th>
<th>All Grades</th>
<th>Grade 3/4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>10</td>
<td>67%</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>8</td>
<td>53%</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>7</td>
<td>47%</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>7</td>
<td>47%</td>
</tr>
<tr>
<td>Fatigue</td>
<td>7</td>
<td>47%</td>
</tr>
<tr>
<td>Infusion related reaction</td>
<td>7</td>
<td>47%</td>
</tr>
<tr>
<td>Anemia</td>
<td>6</td>
<td>40%</td>
</tr>
<tr>
<td>Blood alk phos increased</td>
<td>6</td>
<td>40%</td>
</tr>
<tr>
<td>Chills</td>
<td>6</td>
<td>40%</td>
</tr>
<tr>
<td>Cough</td>
<td>6</td>
<td>40%</td>
</tr>
<tr>
<td>Nausea</td>
<td>6</td>
<td>40%</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>6</td>
<td>40%</td>
</tr>
<tr>
<td>Headache</td>
<td>5</td>
<td>33%</td>
</tr>
<tr>
<td>Nasal congestion</td>
<td>5</td>
<td>33%</td>
</tr>
<tr>
<td>Peripheral Edema</td>
<td>5</td>
<td>33%</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>4</td>
<td>27%</td>
</tr>
<tr>
<td>Dysgeusia</td>
<td>4</td>
<td>27%</td>
</tr>
<tr>
<td>Myalgia</td>
<td>4</td>
<td>27%</td>
</tr>
</tbody>
</table>

Dose Modifications

<table>
<thead>
<tr>
<th></th>
<th>Delay</th>
<th>Withdrawn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pembro</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Umbralisib</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>
Correlatives: T-reg population

Circulating FoxP3+ CD4+ T cell levels do not change significantly in CLL study patients

FoxP3+ CD4 T cells vs. time

FoxP3 Column analysis
(CD3+CD4+FoxP3+ Lymphs, PB)

N.S.
Efficacy & Tolerability: Duration of Exposure

- **CLL**
 - Refractory
 - Relapsed
 - Refractory
 - Refractory
 - Relapsed
 - Refractory
 - Refractory
 - Relapsed
 - Refractory
 - Refractory
 - Refractory

- **Richter’s**
 - Refractory
 - Refractory
 - Refractory

U2 Induction
- 0 to 4 months

U2 + Pembro
- 5 to 9 months

U2 Maintenance
- 10 to 20 months

Follow-up Off Therapy
- 21 to 39 months

- **PD:** Progression Disease
Efficacy: ORR

BTK Refractory CLL
- **ORR: 80% (4/5)**
- 3/4 BTK Refractory responders achieved response after U2 Induction, prior to pembrolizumab.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>CR N (%)</th>
<th>PR N (%)</th>
<th>ORR N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLL</td>
<td>10</td>
<td>1 (10%)</td>
<td>8 (80%)</td>
<td>9 (90%)</td>
</tr>
<tr>
<td>RT</td>
<td>4</td>
<td>2 (50%)</td>
<td>0</td>
<td>2 (50%)</td>
</tr>
</tbody>
</table>

Percent Change from Baseline

- **After U2 Induction**
- **After U2 + Pembro Consolidation**
Efficacy: PFS

Progression-Free Survival for CLL (N=10)

12 Month PFS: 89%
Median PFS: NR (95% CI; 5.4 – NR)
Median follow-up: 15.6 mos
73 yo Male
Cytogenetics: 17p/11q del
Prior Treatment History for CLL:
- **2010**: FCR
- **2014**: BR
- **2014**: Ibrutinib
- **2015**: Idelalisib + rituximab
- **2015**: CD19 - CAR-T
- **2017**: Ibrutinib again for 4 mos... progressed with Richter’s
Prior Treatment for RT:
- **Oct 2017**: CD19 CAR-T → ibrutinib
- Not eligible for HD chemotherapy

Started U2 + Pembro
Cohort 1 - 100 mg

- **End of Cycle 2**: 76%↓ - PR
- **End of Cycle 5**: Complete Response
 - **PET-negative** by Lugano Criteria (Cheson 2014)
- Tolerated U2 + Pembro well
 - 1 G3/4 AE: neutropenia
 - Umbralisib held for 4 days, G-CSF initiated and recovered. Resumed full dose umbralisib

Subject remains on study in CR 10+ months
RT Patient 2: Case Study

- **62 yo Male**
- **Prior Treatment History for CLL:**
 - **2008:** PCR
 - **2011:** BR
 - **2013:** FCR
 - **2013:** Ofatumumab + Fludara + Cyclophosphamide
 - **2014:** Alemtuzumab
 - **2014:** Allo Transplant
- **Prior Treatment for RT:**
 - **Nov 2014:** R-CHOP + Ibrutinib
 - PD while on Ibrutinib in 2017

Started U2 + Pembro
Cohort 1 - 100 mg

- **End of Cycle 2:** 76%↓ - PR
- **End of Cycle 5:** 78%↓ - PR
- **End of Cycle 8:** Complete Response
 - **PET-negative** by Lugano Criteria (Cheson 2014)
- Tolerated U2 + Pembro well
 - 1 G3 event of Hypophosphatemia (possible related)
 - 1 G3 event of Hyperglycemia (not related)
 - No umbralisib dose modifications required

Subject remains on study in CR
Subject remains in Complete Response now 16+ mos on trial
Conclusions

- Triplet combination of umbralisib + ublituximab (“U2”) + pembrolizumab was well tolerated
 - Immune mediated toxicities were not increased above what would be expected with either umbralisib or pembrolizumab alone
- Responses were durable in BTK refractory, high-risk pts, including two durable CRs in RT pts
 - Data suggest that CLL pts who achieve less than CR with a checkpoint inhibitor-containing regimen can achieve durable remissions and that time-limited schedules should be explored
- Maintenance of T-regs throughout therapy may explain limited autoimmune sequelae
- Enrollment is ongoing in both the CLL (BTK refractory only) and RT cohorts
 - Protocol amendment underway to replace pembro with novel anti-PD-L1 (TG-1501)
Acknowledgements

- Thank you to the patients and their families for their participation

- Participating Centers:
 - University of Pennsylvania Abramson Cancer Center
 - Memorial Sloan-Kettering Cancer Center
 - Fred Hutch

- Referring Center:
 - Duke Cancer Institute

- Sponsor:
 - TG Therapeutics