Silencing c-Myc Translation as a Therapeutic Strategy through Targeting PI3Kδ and CK1ε in Hematological Malignancies

Changchun Deng¹,²,³,* , Mark M. Lipstein², Luigi Scotto², Xavier O. Jirau Serrano², Michael A. Mangone², Shirong Li³, Jeremie Vendome⁴, Yun Hao⁵, Xiaoming Xu², Xiaopin Liu², Ipsita Pal², Shi-Xian Deng², Nicholas P. Tatonetti⁵, Suzanne Lentzsch³, Barry Honig⁴, Donald W. Landry², and Owen A. O'Connor¹,²

Columbia University Medical Center
Disclosure

• Research funding from TG Therapeutics, Inc.
Targeting of c-Myc Translation as a Novel Therapeutic Strategy

- No c-Myc targeting drugs have been approved.
- C-Myc protein has a short half life, 30 min.
- C-Myc mRNA has complex secondary structures in the 5’ untranslated region (UTR), which negatively regulate cap dependent translation of c-Myc.

Translation of c-Myc is potently inhibited by silvestrol, a selective inhibitor of the eukaryotic initiation factor 4A (eIF4A).

Andresen et al., Nucleic Acids Res 2012
Wolfe et al., Nature 2014
Targeting Translation of c-Myc through Inhibiting Phosphorylation of 4E-BP1

Proteasome → PI3Kδ → AKT → mTOR → eIF4E → 4E-BP1 → PI3Kδ → mTOR

Amino acids → mTOR

?Other? Kinases

?Other? Kinases

Hutter, G., et al., Leukemia, 2012

Combining PI3K and Proteasome Inhibitors May Synergistically Inhibit Translation of c-Myc and Kill Lymphoma Cells

PI3K → mTORC1 → pp-4E-BP1 → eIF4F → c-Myc

Proteasome

PI3Kδ Inhibitors

<table>
<thead>
<tr>
<th>Drugs</th>
<th>TGR-1202 (TG)</th>
<th>Idelalisib (Ide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carfilzomib (Cfz)</td>
<td>TC</td>
<td>IC</td>
</tr>
<tr>
<td>Bortezomib (Bz)</td>
<td>TB</td>
<td>IB</td>
</tr>
</tbody>
</table>
TC Is Highly Synergistic and Superior to Other Combinations of PI3K and Proteasome Inhibitors

Excess over Bliss (EOB) > 0: Synergy

TCR-1202 (μM)

Idelalisib (μM)
TC is highly synergistic and superior to other combinations.

- TC is highly synergistic in 12 cell line models of DLBCL, MCL, MM, T-ALL, and CTCL.
- TC is highly synergistic in primary CLL, MCL, and MZL cells.
- TC synergistically induces apoptosis.
TC Uniquely and Synergistically Inhibits Translation of c-Myc and Phosphorylation of 4E-BP1

- TC does not inhibit the mRNA level of c-Myc.
- A reporter of MYC 5’UTR confirms TC inhibits translation of c-Myc.
Effects of TC on Global mRNA Translation

Ribosome footprinting & RNAseq

Polysomes

RNAseq (mRNA expression level)

Translation Efficiency (TE) = Translation Rate / mRNA level

Gel Purify Ribosomal Footprints & Generate Library Sequence (Translation Rate)
TC Inhibits Global mRNA Translation

Genome Wide Effects of TC on Translation Efficiency (TE)

\[\log_2 \left(\frac{\text{TE}_{\text{Treated}}}{\text{TE}_{\text{Control}}} \right) \]

- 6
- 4
- 2
 0
 2
 4
 6
 8

Frequency

\[n = 11961 \]
\[\mu = -0.05 \]
\[\sigma = 1.22 \]
TC Selectively Inhibits Translation of Genes Involved in Translation

iPAGE analysis of the ontology of translationally altered genes

Measure of Change In Translation Efficiency +/- (1-p)
Decrease With Treatment Increase With Treatment

Extracellular matrix
Translation factor
RNA splicing
Mitochondrial membrane
Nucleolus
Constituents of ribosome
Mitotic cell cycle
Proteasome complex
TC Inhibits the Transcription of c-Myc Target Genes

- Cytotoxicity of TC is recued by forced overexpression of c-Myc.
- Cytotoxicity of TC is recued by forced overexpression of eIF4E.
TGR-1202 and carfilzomib, but not combinations of other drugs in the same classes, synergistically inhibit c-Myc translation and c-Myc dependent gene transcription, by potently inhibiting phosphorylation of 4E-BP1.

TGR-1202 and carfilzomib synergistically induce apoptosis in lymphoma cells through targeting c-Myc.
TGR-1202 Is Structurally Distinct from Idelalisib and Duvelisib
TGR-1202, but not Idelalisib or Duvelisib, Inhibits Casein Kinase 1 Epsilon (CK1ε)

Kinase activity (% of control) using the Reaction Biology Kinome Profiling platform

<table>
<thead>
<tr>
<th>Kinase</th>
<th>TGR-1202 #1</th>
<th>TGR-1202 #2</th>
<th>Idelalisib #1</th>
<th>Idelalisib #2</th>
<th>Duvelisib #1</th>
<th>Duvelisib #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK1a1</td>
<td>111</td>
<td>111</td>
<td>110</td>
<td>107</td>
<td>112</td>
<td>111</td>
</tr>
<tr>
<td>CK1a1L</td>
<td>105</td>
<td>103</td>
<td>102</td>
<td>101</td>
<td>104</td>
<td>99</td>
</tr>
<tr>
<td>CK1delta</td>
<td>105</td>
<td>98</td>
<td>96</td>
<td>104</td>
<td>100</td>
<td>97</td>
</tr>
<tr>
<td>CK1epsilon</td>
<td>40</td>
<td>40</td>
<td>93</td>
<td>93</td>
<td>93</td>
<td>91</td>
</tr>
<tr>
<td>CK1g1</td>
<td>99</td>
<td>98</td>
<td>105</td>
<td>105</td>
<td>102</td>
<td>98</td>
</tr>
<tr>
<td>CK1g2</td>
<td>104</td>
<td>104</td>
<td>102</td>
<td>100</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>CK1g3</td>
<td>96</td>
<td>95</td>
<td>94</td>
<td>93</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>CK2a</td>
<td>83</td>
<td>78</td>
<td>97</td>
<td>96</td>
<td>95</td>
<td>84</td>
</tr>
<tr>
<td>CK2a2</td>
<td>86</td>
<td>86</td>
<td>94</td>
<td>92</td>
<td>102</td>
<td>100</td>
</tr>
</tbody>
</table>
TGR-1202 and the CK1ε Inhibitor PF4800567 Share an Identical Structural Moiety

Central pyrazolo-pyrimidine moiety
TGR-1202 and Its Analogs Inhibit CK1ε

Kinase activity (% of control) using recombinant CK1ε

- Two analogs of TGR-1202, CUX-03173 and CUX-03166, demonstrate markedly different potency targeting CK1ε, despite they differ by only one methyl group.
- Idelalisib does not inhibit CK1ε.
Dual Targeting of PI3Kδ and CK1ε Underscores the Unique Activity of TGR-1202 in DLBCL

- 38% (6/16) Combo Responders.
- 30% (3/10) single responders.
- CR only in combo responders.
TGR-1202 as the First CK1ε Inhibitor Available for Patients May Have a Unique Therapeutic Role in c-Myc Driven Lymphoma

NCT02867618: actively enrolling patients

Phase I/II Study of TGR-1202 and Carfilzomib in the Treatment of Patients with Relapsed or Refractory Lymphoma
Thank You!!

Center for Lymphoid Malignancies

Owen A. O’Connor, M.D., Ph.D.
Mark Lipstein, B.S.
Xavier Jirau, B.S.
Luigi Scotto, Ph.D.
Michael Mangone, Ph.D.
Xiaoping Liu, M.D., Ph.D.
Ipsita Pal, Ph.D.

Nicholas Hornstein M.D., Ph.D. and Peter Sims, Ph.D.
Biochemistry & Mol. Biophysics; Systems Biology

Shi-Xian Deng, Ph.D.
Xiaoming Xu, Ph.D.
Donald W. Landry, M.D., Ph.D.
Experimental Therapeutics

Jeremie Vendome, Ph.D. and Barry Honig, Ph.D.
Biochemistry & Mol. Biophysics; Systems Biology
Howard Hughes Medical Institute

Yun Hao and Nicholas Tatonetti, Ph.D.
Biomedical informatics

Shirong Li, Ph.D. and Suzanne Lentzsch, M.D., Ph.D.
Hematology & Oncology

Funding Support

Lymphoma Research Fund
Irving Institute CTO Pilot Award
Precision Medicine Pilot Award
TG Therapeutics